Course Intro &
Algorithms and Abstraction

15-110 — Wednesday 01/18

* Understand the expectations, resources, and policies associated with
15-110

* Define the essential components of computer science, algorithms
and abstraction

* Construct plain-language algorithms to solve basic tasks

Course Introduction

The goal of this course is to introduce you to the field of computer

science. This includes both programming and more general algorithmic
concepts.

We'll start from the basics of programming and how computers work,
then build up to how computers are used to support a variety of
applications in different fields (including your own field of study,
possibly).

Staff

Prof. Kelly

Rivers

17 Teaching Assistants!

Course Website: https://www.cs.cmu.edu/~110

You'll find the schedule, uploaded slides, assignments, the syllabus,
and everything else you need here. Bookmark it now!

Piazza: https://piazza.com/class/lcp556nkons13w/live

We'll use this to handle live lecture questions. Go to LIVE Q&A in the
top-left corner (or click on the link above) to post questions and
upvote other students' questions! (You can also always raise your hand
if you have a question).

https://www.cs.cmu.edu/~110
https://piazza.com/class/lcp556nkons13w/live

1. Attend lecture and recitation. If you can't attend live, notify the instructor
in advance to gain access to a recording and review on your own.

2. Complete the exercise associated with the lecture.

3. Complete the check-in/fhomework assignment associated with the lecture
content.

4. Demonstrate your knowledge on the exam associated with the lecture.
5. Demonstrate all collected knowledge in the final exam.

The bolded items all contribute to your final grade; see syllabus for details.

More tips here: https://www.cs.cmu.edu/~110/syllabus.html#tips

https://www.cs.cmu.edu/~110/syllabus.html#tips

Lectures will primarily present new content, but we'll frequently use
active learning to give you a chance to practice new skills.

You do: turn to the person next to you and introduce yourself! Name,
major, why you're taking 15-110.

Important Resources

Course website: www.cs.cmu.edu/~110/

Also:

e Piazza —announcements, questions

 OH Queue — office hour questions

* Gradescope — exercises, homework handin, read feedback

e Canvas — grades

http://www.cs.cmu.edu/~110/
https://piazza.com/class/lcp556nkons13w
https://www.eberly.cmu.edu/ohq/#/
https://www.gradescope.com/courses/486295/
https://canvas.cmu.edu/courses/33353

We encourage you to collaborate on the assignments! We'll release
collaboration forms where you can ask to be paired up with other students
in the class to find collaborators, or you can just pair up with people you
already know.

When you collaborate, all students should contribute intellectually to the
work, and each student must write up their solutions independently. Do not
have one student solve a problem and present it to the rest of the group;
instead, have all students solve the problem together.

The following actions count as cheating, not collaboration, and lead to
penalties: copying, providing answers to others, getting answers from older
students, comparing solutions, searching for answers online, collaborating
during exams/the final exam.

* | have no prior programming experience. Can | succeed in this class?

* Most of your classmates (usually ~75%) have no prior experience as well. You can
definitely succeed, and you're not alone!

e Should | take 15-104 (runs in fall), 15-110, or 15-112?

* Content: 104 focuses on creative applications of programming. 110 gives a broad

overview of programming and computer science. 112 focuses more deeply on
programming and problem solving.

* Pace: 104 is paced a bit slower than 110. 110 is paced slower than 112 at the
beginning (data, functions, conditionals, loops). 112 is fast-paced throughout.

* Feel free to contact the professor if you want advice on your individual situation.

 What if | need to turn something in late?

* Each exercise and assignment has a regular deadline and a revision deadline.
Submissions received between the regular deadline and the revision deadline
are graded for a max of 90 points.

e Submissions made before the regular deadline may also be resubmitted for a
max of 90 points. Submit early and get feedback so you can fix your mistakes!

* Students in exceptional situations (medical/family/personal emergencies)
may reach out to the professor to arrange further extensions.

* I'm struggling with the homework/exams. What can | do?

* Homework: use Piazza to ask short questions and see questions others have
asked. Use office hours to get one-on-one help. Consider collaborating with
other students so you have someone to bounce ideas off of. Submit early and
view your feedback after the regular deadline, then revise and resubmit. And
above all, remember that it's okay to ask for help!

* Exams: complete practice problems to get additional exposure to the
material. Go to small group sessions for more guided review of specific
concepts. Go to drop-in tutoring for one-on-one review of the topics you
struggle with.

Taking care of yourself is incredibly important, especially in tumultuous
times. Your personal wellbeing is more important than academics.

Make sure you regularly eat healthy food, get enough sleep, exercise,
socialize, and take some time to relax. You will be happier, and you will
do better academically as a direct result.

We want everyone to feel welcomed and capable of learning in 15-110.
If you feel that the course is negatively impacting your wellbeing, or
you do not feel included, reach out and let us know.

Before Friday, do the following:

* Fill out the pre-semester survey to help us gather more information about
your incoming knowledge and interests: https://bit.ly/110-s23-pre

* Read the course syllabus: https://www.cs.cmu.edu/~110/syllabus.html
* It includes many details we did not cover here. Seriously, read it!

* |nstall the Thonny IDE (which includes the Python programming language)
onto your computer
* Instructions can be found here: https://www.cs.cmu.edu/~110/syllabus.html#materials

15

https://bit.ly/110-s23-pre
https://www.cs.cmu.edu/~110/syllabus.html
https://www.cs.cmu.edu/~110/syllabus.html#materials

Algorithms

Computer science is the study of computation, and computational devices. This can be
studied through many different lenses, including:

 Computational theory — what are the possibilities and limitations of computation?
* Computational application — how can we use computation to fulfill a specific need?

 Computational discovery — given data, can we find patterns and answer questions
through computation?

* Computational expression —how can computation change the way we communicate and
engage with others?

 Critical computing — how does computation affect our lives, and how should it be
regulated?

What do we mean by 'computation'? We can reduce this to two core themes: algorithms
and abstraction.

Read more: https://cacm.acm.org/blogs/blog-cacm/249787-what-liberal-arts-and-sciences-students-need-to-know-about-computing/fulltext

https://cacm.acm.org/blogs/blog-cacm/249787-what-liberal-arts-and-sciences-students-need-to-know-about-computing/fulltext

Algorithms are procedures that specify

how to do a needed task or solve a

problem. They are used to standardize

Brocesses and communicate them
etween different people.

Algorithms can be incredibly powerful, but
they're still designed by humans, which
means they're vulnerable to human flaws.

Algorithms are like recipes, tax codes, and
sewing patterns. When you give someone
directions to a location, you're
communicating an algorithm.

Abstraction is a technique used to make
complex systems manageable by changing
the amount of detail used to represent or
interact with the system.

This can be done by identifying the most
important features of a system and
generalizing away unessential features.

Abstraction shows up in many interactions —
for example, you can pay for groceries
through many modalities (cash, debit, credit,
an app), and each is implemented slightly
differently, but all are just different
representations of money.

Activity — Make a PB & J Sandwich

You do: work with a grouato write a list
of instructions (an algorithm) on how to
make a peanut butter and jelly
sandwich.

I-)

Before you begin, consider what level of
abstraction to use. Assume the user
knows the ingredients and how to do
basic actions, but has no cooking
experience.

We'll test your instructions in a few
minutes...

19

=

O 00 N O Uk WD

e e o e
o bk wnNE O

Before starting: make sure you have a bag of bread, a jar of peanut butter, a jar of jelly, a plate, and a

knife

Open bag of bread

Reach hand in and take out 2 slices of bread

Place each slice on a plate

Open jar of peanut butter

Pick up knife and stick sharp side of knife into open jar

Use knife to scoop out peanut butter

Wipe and spread peanut butter on one slice of bread

Repeat 5, 6, 7 until slice of bread is covered in peanut butter. Then close jar
Open jar of jelly

Pick up knife and stick sharp side of knife into open jar

Use knife to scoop out jelly

Wipe and spread jelly on non-PB slice of bread

Repeat 10, 11, 12 until the slice of bread is covered in jelly. Then close jar.
Put the peanut butter side of one slice of bread on the jelly side of the other.
Result: you now have a peanut butter and jelly sandwich on a plate

We assume that the
user can identify the
ingredients and tools,
and knows basic
actions, but does not
know complex actions.

o Uk w e

Before starting: make sure you have bread, peanut butter, and jelly

Get two slices of bread

Spread peanut butter on one slice
Spread jelly on the other slice
Combine slices into a sandwich

Result: you now have a peanut butter and jelly sandwich

If we've already taught
someone the basics of
sandwich-making, teaching
them to make a PB & J
sandwich is a lot simpler!

Note that we don't define
how to spread the peanut
butter or jelly. Maybe the
user will have a different
approach to ours.

10.

Before starting: make sure you have [specific quantity and type of bread
in plastic bag with tab], hand, plate...

Define bread as a grain-based substance that has been divided into 1
inch wide parts (slices). Bread is in a plastic container (bag)

Open bread bag by gently pulling a plastic tab away from the plastic
wrap.

Define hand as the appendage at the end of your arm. Define fingers as
the smaller appendages at the end of your hand

Define plate as a hard, flat, usually-circular surface

Move hand into the opening in the bread bad. Move fingers to close
position around the top bread slice

Lift hand until it is outside of bread bag.

Move hand over the plate, then down so that it is touching plate. Open
fingers around the bread slice.

Repeat steps 5-7 so that a second bread slice is on the plate.

If someone doesn't
even know the basic
assumptions (a toddler,
or a robot), we'll need
to define every item
used and how to
execute even the
simplest steps. And
we're still making
assumptions here!

Designing algorithms at the right level of abstraction is a large part of
computer science. When we represent an algorithm as program code, we
communicate with a computer to tell it how to do a specific task.

What are the core parts of an algorithm?

* |t should specify what is needed at the beginning (input)

* |t should specify what is produced at the end (output)

* |t should specify how to get from the beginning to the end (steps)

We'll come back to this idea of input, output, and steps next week when we
learn about functions.

Still confused about some of the topics from lecture? Feel free to post
follow-up questions on Piazza!

TAs will monitor the site to answer questions throughout the week.

Also: don't forget to attend recitation tomorrow at your assigned time
& room to meet your TA(s)!

* Understand the expectations, resources, and policies associated with
15-110

* Define the essential components of computer science, algorithms
and abstraction

* Construct plain-language algorithms to solve basic tasks

	Slide 1: Course Intro & Algorithms and Abstraction
	Slide 2: Learning Objectives
	Slide 3: Course Introduction
	Slide 4: Purpose of 15-110
	Slide 5: Staff
	Slide 6: Important Links
	Slide 7: How to Learn in 15-110
	Slide 8: Active Learning
	Slide 9: Important Resources
	Slide 10: Collaboration Policy
	Slide 11: Frequently Asked Questions - Placement
	Slide 12: Frequently Asked Questions – Deadlines
	Slide 13: Frequently Asked Questions – Resources
	Slide 14: Take care of yourself!
	Slide 15: Take-Home Tasks
	Slide 16: Algorithms
	Slide 17: What is Computer Science?
	Slide 18: Algorithms and Abstraction
	Slide 19: Activity – Make a PB & J Sandwich
	Slide 20: An Algorithm with Moderate Abstraction
	Slide 21: An Algorithm with Heavy Abstraction
	Slide 22: An Algorithm with Little Abstraction
	Slide 23: Designing Good Algorithms
	Slide 25: Post-Lecture Questions
	Slide 26: Learning Objectives

