Unit 1 - Programming Skills and Computer Organization

Unit 2 - Data Structures and Efficiency

Unit 3 - Scaling Up Computing

Unit 4 - CS as a Tool

Unit 5 - CS in the World

Unit 1 - Programming Skills and Computer Organization

Define the essential components of computer science, algorithms and
abstraction
Construct plain-language algorithms to solve basic tasks

Recognize and use the basic data types in programs
Interpret and react to basic error messages caused by programs
Use variables in code and trace the different values they hold

Understand how different number systems can represent the same information
Translate binary numbers to decimal, and vice versa
Interpret binary numbers as abstracted types, including colors and text

Use function calls to run pre-built algorithms on specific inputs

Identify the argument(s) and returned value of a function call

Use libraries to import functions in categories like math, randomness, and
graphics

Use function definitions when reading and writing algorithms to implement
procedures that can be repeated on different inputs

Recognize the difference between local and global scope

Trace function calls to understand how Python keeps track of nested function
calls

Use logical operators on Booleans to compute whether an expression is True or
False

Use conditionals when reading and writing algorithms that make choices based
on data

Recognize the different types of errors that can be raised when you run Python
code



Translate Boolean expressions to truth tables and circuits

Translate circuits to truth tables and Boolean expressions

Recognize how addition is done at the circuit level using algorithms and
abstraction

Use while loops when reading and writing algorithms to repeat actions while a
certain condition is met

Identify start values, continuing conditions, and update actions for loop
control variables

Use for loops when reading and writing algorithms to repeat actions a specified
number of times
Recognize which numbers will be produced by a range expression

Index and slice into strings to break them up into parts
Use for loops to loop over strings by index

Translate algorithms from control flow charts to Python code
Use nesting of statements to create complex control flow



Unit 2 - Data Structures and Efficiency

Read and write code using 1D and 2D lists
Use string/list methods to call functions directly on values

Recognize whether two values have the same reference in memory
Recognize the difference between destructive vs. non-destructive
functions/operations on mutable data types

Use aliasing to write functions that destructively change lists

Define and recognize base cases and recursive cases in recursive code
Read and write basic recursive code

Trace over recursive functions that use multiple recursive calls with Towers of
Hanoi

Recognize linear search on lists and in recursive contexts
Use binary search when reading and writing code to search for items in sorted
lists

Identify the keys and values in a dictionary
Use dictionaries when writing and reading code that uses pairs of data
Use for loops to iterate over the parts of an iterable value

Identify the worst case and best case inputs of functions
Compare the function families that characterize different functions
Calculate a specific function or algorithm's efficiency using Big-O notation

Identify core parts of trees, including nodes, children, the root, and leaves
Use binary trees implemented with dictionaries when reading and writing code

Identify core parts of graphs, including nodes, edges, neighbors, weights, and
directions.

Use graphs implemented as dictionaries when reading and writing simple
algorithms in code

Identify whether a tree is a tree, a binary tree, or a binary search tree (BST)
Search for values in trees using linear search and in BSTs using binary search
Analyze the efficiency of binary search on balanced vs. unbalanced BSTs
Recognize the requirements for building a good hash function and a good
hashtable that lead to constant-time search



Identify brute force approaches to common problems that run in O(n!) or O(2"),
including solutions to Travelling Salesperson, puzzle-solving, subset sum,
Boolean satisfiability, and exam scheduling

Define the complexity classes P and NP and explain why these classes are
important

Identify whether an algorithm is tractable or intractable, and whether it is in P,
NP, or neither complexity class

Use heuristics to find good-enough solutions to NP problems in polynomial time



Unit 3 - Scaling Up Computing

Recognize and define the following keywords: concurrency, parallel
programming, CPU, scheduler, throughput, multitasking, multiprocessing,
and deadlock

Calculate the total steps and time steps taken by a parallel algorithm

Create pipelines to increase the efficiency of repeated operations by splitting
steps across cores

Recognize and define the following keywords: distributed computing, cloud
computing, browsers, routers, ISPs, IP addresses, DNS servers, protocols,
and packets.

Use the MapReduce pattern to design parallelized algorithms for distributed
computing

Understand at a high level the internet communication process that happens
when you click on a link to a website in your browser.

Recognize and define the following keywords: fault tolerance, bottlenecks, net
neutrality, data privacy, data security, DDOS attacks, and man-in-the-middle
attacks

Recognize and define common approaches of authentication, including
passwords and certificates

Recognize and define the core elements of encryption, including plaintext,
ciphertext, keys, encoding, decoding, and breaking

Trace common encryption algorithms, such as the Caesar Cipher and RSA,
and recognize whether they are symmetric or asymmetric

Read and write data from files
Implement and use helper functions in code to break up large problems into
solvable subtasks

Install external modules and import them into files
Learn how to use new libraries by using documentation and tutorials



Unit 4 - CS as a Tool

Identify whether features in a dataset are categorical, ordinal, or numerical
Interpret data according to different protocols: CSV and JSON

Use string operations and methods to extract data from plaintext

Reformat data to find, add, remove, or reinterpret pre-existing data

Represent the state of a system in a model by identifying components and
rules

Visualize a model using graphics

Update a model over time based on rules

Identify the three major categories of learning (supervised, unsupervised, and
reinforcement) and the three major categories of reasoning (classification,
regression, and clustering)

Decide which combination of learning and reasoning categories are best used
to solve a stated problem

Perform basic analyses on data, including calculating statistics and
probabilities, to answer simple questions

Choose an appropriate visualization to create based on the number of
dimensions and data types

Create simple matplotlib visualizations that show the state of a dataset

Update a model after events (mouse-based and keyboard-based) based on
rules
Use Monte Carlo methods to estimate the answer to a question

Describe how training, validation, and testing are used to build a model and
measure its performance

Recognize how Als attempt to achieve goals by using a perception, reason,
and action cycle

Build game trees to represent the possible moves of a game

Use the minimax algorithm to determine an Al's best next move in a game



Unit 5 - CS in the World

Big Ideas of: Introduction of the theoretical concept of a computer

Big Ideas of: Construction of the first computer hardware and software

Big Ideas of: Transition of computers from government/corporate to personal
Big Ideas of: Connection of computers via the internet

Understand the current extent of data collection on the internet and how data is
used

Recognize the uses and drawbacks of facial recognition algorithms in different
contexts

Identify the societal impact when automated decision making replaces human
decision making due to the explainability problem and job displacement

Recognize and describe the key impacts of future computing ideas, potentially
including: TBD.



