
Unit 1 - Programming Skills and Computer Organization

Unit 2 - Data Structures and Efficiency

Unit 3 - Scaling Up Computing

Unit 4 - CS as a Tool

Unit 5 - CS in the World

Unit 1 - Programming Skills and Computer Organization
● Define the essential components of computer science, algorithms and

abstraction
● Construct plain-language algorithms to solve basic tasks

● Recognize and use the basic data types in programs
● Interpret and react to basic error messages caused by programs
● Use variables in code and trace the different values they hold

● Understand how different number systems can represent the same information
● Translate binary numbers to decimal, and vice versa
● Interpret binary numbers as abstracted types, including colors and text

● Use function calls to run pre-built algorithms on specific inputs
● Identify the argument(s) and returned value of a function call
● Use libraries to import functions in categories like math, randomness, and

graphics

● Use function definitions when reading and writing algorithms to implement
procedures that can be repeated on different inputs

● Recognize the difference between local and global scope
● Trace function calls to understand how Python keeps track of nested function

calls

● Use logical operators on Booleans to compute whether an expression is True or
False

● Use conditionals when reading and writing algorithms that make choices based
on data

● Recognize the different types of errors that can be raised when you run Python
code



● Translate Boolean expressions to truth tables and circuits
● Translate circuits to truth tables and Boolean expressions
● Recognize how addition is done at the circuit level using algorithms and

abstraction

● Use while loops when reading and writing algorithms to repeat actions while a
certain condition is met

● Identify start values, continuing conditions, and update actions for loop
control variables

● Use for loops when reading and writing algorithms to repeat actions a specified
number of times

● Recognize which numbers will be produced by a range expression

● Index and slice into strings to break them up into parts
● Use for loops to loop over strings by index

● Translate algorithms from control flow charts to Python code
● Use nesting of statements to create complex control flow



Unit 2 - Data Structures and Efficiency
● Read and write code using 1D and 2D lists
● Use string/list methods to call functions directly on values

● Recognize whether two values have the same reference in memory
● Recognize the difference between destructive vs. non-destructive

functions/operations on mutable data types
● Use aliasing to write functions that destructively change lists

● Define and recognize base cases and recursive cases in recursive code
● Read and write basic recursive code
● Trace over recursive functions that use multiple recursive calls with Towers of

Hanoi

● Recognize linear search on lists and in recursive contexts
● Use binary search when reading and writing code to search for items in sorted

lists

● Identify the keys and values in a dictionary
● Use dictionaries when writing and reading code that uses pairs of data
● Use for loops to iterate over the parts of an iterable value

● Identify the worst case and best case inputs of functions
● Compare the function families that characterize different functions
● Calculate a specific function or algorithm's efficiency using Big-O notation

● Identify core parts of trees, including nodes, children, the root, and leaves
● Use binary trees implemented with dictionaries when reading and writing code

● Identify core parts of graphs, including nodes, edges, neighbors, weights, and
directions.

● Use graphs implemented as dictionaries when reading and writing simple
algorithms in code

● Identify whether a tree is a tree, a binary tree, or a binary search tree (BST)
● Search for values in trees using linear search and in BSTs using binary search
● Analyze the efficiency of binary search on balanced vs. unbalanced BSTs
● Recognize the requirements for building a good hash function and a good

hashtable that lead to constant-time search



● Identify brute force approaches to common problems that run in O(n!) or O(2n),
including solutions to Travelling Salesperson, puzzle-solving, subset sum,
Boolean satisfiability, and exam scheduling

● Define the complexity classes P and NP and explain why these classes are
important

● Identify whether an algorithm is tractable or intractable, and whether it is in P,
NP, or neither complexity class

● Use heuristics to find good-enough solutions to NP problems in polynomial time



Unit 3 - Scaling Up Computing
● Recognize and define the following keywords: concurrency, parallel

programming, CPU, scheduler, throughput, multitasking, multiprocessing,
and deadlock

● Calculate the total steps and time steps taken by a parallel algorithm
● Create pipelines to increase the efficiency of repeated operations by splitting

steps across cores

● Recognize and define the following keywords: distributed computing, cloud
computing, browsers, routers, ISPs, IP addresses, DNS servers, protocols,
and packets.

● Use the MapReduce pattern to design parallelized algorithms for distributed
computing

● Understand at a high level the internet communication process that happens
when you click on a link to a website in your browser.

● Recognize and define the following keywords: fault tolerance, bottlenecks, net
neutrality, data privacy, data security, DDOS attacks, and man-in-the-middle
attacks

● Recognize and define common approaches of authentication, including
passwords and certificates

● Recognize and define the core elements of encryption, including plaintext,
ciphertext, keys, encoding, decoding, and breaking

● Trace common encryption algorithms, such as the Caesar Cipher and RSA,
and recognize whether they are symmetric or asymmetric

● Read and write data from files
● Implement and use helper functions in code to break up large problems into

solvable subtasks

● Install external modules and import them into files
● Learn how to use new libraries by using documentation and tutorials



Unit 4 - CS as a Tool
● Identify whether features in a dataset are categorical, ordinal, or numerical
● Interpret data according to different protocols: CSV and JSON
● Use string operations and methods to extract data from plaintext
● Reformat data to find, add, remove, or reinterpret pre-existing data

● Represent the state of a system in a model by identifying components and
rules

● Visualize a model using graphics
● Update a model over time based on rules

● Identify the three major categories of learning (supervised, unsupervised, and
reinforcement) and the three major categories of reasoning (classification,
regression, and clustering)

● Decide which combination of learning and reasoning categories are best used
to solve a stated problem

● Perform basic analyses on data, including calculating statistics and
probabilities, to answer simple questions

● Choose an appropriate visualization to create based on the number of
dimensions and data types

● Create simple matplotlib visualizations that show the state of a dataset

● Update a model after events (mouse-based and keyboard-based) based on
rules

● Use Monte Carlo methods to estimate the answer to a question

● Describe how training, validation, and testing are used to build a model and
measure its performance

● Recognize how AIs attempt to achieve goals by using a perception, reason,
and action cycle

● Build game trees to represent the possible moves of a game
● Use the minimax algorithm to determine an AI's best next move in a game



Unit 5 - CS in the World
● Big Ideas of: Introduction of the theoretical concept of a computer
● Big Ideas of: Construction of the first computer hardware and software
● Big Ideas of: Transition of computers from government/corporate to personal
● Big Ideas of: Connection of computers via the internet

● Understand the current extent of data collection on the internet and how data is
used

● Recognize the uses and drawbacks of facial recognition algorithms in different
contexts

● Identify the societal impact when automated decision making replaces human
decision making due to the explainability problem and job displacement

● Recognize and describe the key impacts of future computing ideas, potentially
including: TBD.


