
Parallel Programming
15-110 – Wednesday 03/23

Announcements

• HW4 grades are out
• Will add survey bonus points after revision deadline

• Code Review Sign-ups close tonight! (Wed, 11:59PM)

• Check 5 due Mon 03/28 30
• HW4 revisions due Tue 03/29

2

Announcements

• Quiz4 on Wednesday 3/30

• Review materials are now on the website

• Solutions will be uploaded this weekend

• Review session is March 26 (Sat) 2PM in NSH 3005

3

Announcements – Quiz3

4

Announcements – Quiz3

• There has been a drop in attendance
• Lecture/OH/Recitation
• Canvas statistics show that video recordings are not being watched

• Why is attendance important? Relationship between attending class and
doing well in the quiz
• Students who generally completed exercises by 5pm on lecture day: average of 65.91

on the quiz
• Students who completed exercises between 5pm-7am the next morning: 61.64
• Students who completed exercises after lecture day but on time (by the next

lecture): 57.44
• Students who completed exercises late: 49.00

5

Announcements – Studying tips

• Tips for learning/studying
• Attend class, be engaged
• Review slides after class, follow up with questions in OH
• DO NOT memorize slides or code!
• Practice, practice, practice coding!
• More tips: Course website + Piazza post we sent yesterday

• https://www.cs.cmu.edu/~110/syllabus.html#tips
• @247 on Piazza

6

https://www.cs.cmu.edu/~110/syllabus.html

Announcements – Studying for Quizzes
Note: studying from the quiz starts before the quiz. If you do all of the
above, you should already be very well prepared for the quizzes. Here
are extra steps you can take:

• Attend the review session and engage with the material there
• Do the practice problems on the website without looking at the solutions! Then compare

your solutions with the posted
• Pick 2-3 of those practice problems and do those timed (i.e., 5-7 mins) to get that extra

practice under time pressure.
• Once you are done with the review and the studying and feel confident in the material, then

take the practice quiz! Take the quiz under quiz time, as if you were in class to get practice in
an authentic environment.
• Do not overfit your learning to the practice quiz, do not memorize the quiz! Quizzes change from

semester to semester. The practice quiz is more to give you an idea of what the quiz may be like
and give you some practice.

7

Announcements – Next Steps for Quiz 3
• If you are not satisfied with your score, go back and re-study material

from weeks 5-6
• Recordings/slides/recitation worksheets on our website

• We will release Quiz solutions this weekend

• We will release a review video summary of Week 5-6 materials

• More in general: Still time to turn things around!

8

Learning Goals

• Recognize certain problems that arise while multiprocessing, such as
difficulty of design and deadlock

• Create pipelines to increase the efficiency of repeated operations by
executing sub-steps at the same time

• Use the MapReduce pattern to design parallelized algorithms for
distributed computing

9

Designing Concurrent Algorithms

Last time, we discussed the four levels of concurrency used by
computers: circuit-level concurrency, multitasking, multiprocessing,
and distributed computing.

Today, we'll discuss how design algorithms so that they can run
concurrently. This is often referred to as parallel programming.

We won't actually write parallelized code in this class (apart from a bit
of MapReduce code where the parallelization is provided for us), but
we will discuss common problems and algorithms in the field.

10

Difficulties in Parallelization

11

Difficulty of Design

Parallel programming is more difficult than regular programming
because it forces us to think in new ways and adds new constraints to
the problems we try to solve.

First, we must figure out how to design algorithms that can be split
across multiple processes. This varies greatly in difficulty based on the
problem we're solving!

12

Summing a Tree Concurrently

Let's start with a simple example. We showed in class
how to write a function that can sum all the nodes in a
tree. This would run in O(n) time sequentially, since each
node needs to be visited. What if we do it concurrently?

We do zero-to-two recursive calls in each recursive case
(one on the left child, one on the right). Call the left child
recursively on the current core, but send the right child's
call to a new core. This lets us do the two recursive calls
concurrently. In our example to the right, this is shown
using different colors for each core.

How many time-steps does this take? Consider the
original core, which does the most steps. This will only do
one call per level of the tree; if the tree is balanced, that's
log n levels. Concurrent tree-summing is O(log n)!

13

6

3 2

7 98 8

Making Loops Concurrent

It's easy to make recursive problems like tree-summing concurrent if they make multiple
recursive calls. It's harder to think concurrently when writing programs that use loops.

We could plan to identify all the iterations of the loop and run each iteration on a separate
core. But what if the results of all the iterations need to be combined? And what if each
iteration depends on the result of the previous one? This gets even harder if we don't know
how many iterations there will be overall, like when we use a while loop.

A bit later, we'll talk about how to use algorithmic plans to address these difficulties.

14

def search(lst, target):
for item in lst:

if item == target:
return True

return False

def getSum(lst):
sum = 0
for item in lst:

sum = sum + item
return sum

def powersOf2(n):
i = 2
while i < n:

print(i)
i = i * 2

Sharing Resources

The next difficulty of writing parallel programs comes from the fact that
multiple cores need to share individual resources on a single machine.

For example, two different programs might want to access the same
part of the computer's memory at the same time. They might both
want to update the computer's screen or play audio over the
computer's speaker.

15

Locking and Yielding Resources

We can't just let two programs update a resource simultaneously- this will result in garbled
results that the user can't understand. For example, if one program wants to print "Hello
World" to the console, and the other wants to print "Good Morning", the user might end
up seeing "Hello Good World Morning".

To avoid this situation, programs put a lock on a shared resource when they access it.
While a resource is locked, no other program can access it.

Then, when a program is done with a resource, it yields that resource back to the
computer system, where it can be sent to the next program that wants it.

Sidebar: if we want two programs to use a resource simultaneously, we usually use a third
program to combine the actions together, and that third program is the one that accesses
the resource. For example, if you listen to music while watching a lecture recording, your
computer mixes the two audio tracks together and plays the combined result.

16

Deadlock Stalls the System

In general, this system of locking and
yielding fixes most cases where programs
might try to use a resource at the same
time. But there are some situations where
it can cause trouble.

Two programs, Youtube and Zoom, both
want to access the screen and audio. They
put their requests in at the same time, and
the computer gives the screen to Youtube
and the audio to Zoom.

Both programs will lock the resource they
have, then wait for the next resource to
become available. Since they're waiting on
each other, they'll wait forever! This is
known as deadlock.

17

Deadlock Definition

In general, we say that deadlock occurs when
two or more processes are all waiting for some
resource that other processes in the group
already hold. This will cause all processes to
wait forever without proceeding.

Deadlock can happen in real life! For example,
if enough cars edge into traffic at four-way
intersections, the intersections can get locked
such that no one can move forward.

In the example to the right, each direction of
traffic needs two of the intersection spots, but
only has one. All four directions are blocked as
a result.

18

A

B C

D

Fix Deadlock With Ordered Resources

In order to fix deadlock, impose an
order that programs always follow
when requesting resources.

For example, maybe Youtube and
Zoom must receive the screen lock
before they can request the audio.
When Youtube gets the screen, it can
make a request for the audio while
Zoom waits for its turn.

When Youtube is done, it will yield
its resources and Zoom will be able
to access them.

19

Some Processes Need to Communicate

We can't always guarantee that the processes running concurrently on a computer
are independent. If a single program is split into multiple tasks that run concurrently
instead, those tasks might need to share partial results as they run. They'll need a
way to communicate with each other.

Data is shared between processes by passing messages. When one task has found a
result, it may send it to the other process before continuing its own work.

If one process depends on the result of another, it may need to halt its work while it
waits on the message to be delivered. This can slow down the concurrency, as it takes
time for data to be sent between cores or computers. Example: in tree-summing, a
core will need to wait for both calls to finish before it can sum the results.

20

Pipelining and MapReduce

Writing algorithms that can pass messages is tricky. We'll discuss two
approaches that make it easier: pipelining and MapReduce.

The core idea behind pipelining is that you can parallelize an algorithm
by splitting up the algorithm into a series of consecutive steps.

The core idea behind MapReduce is that you can parallelize an
algorithm by splitting up the data into many many small parts.

21

Message Passing Example: Line Cooking

Let's introduce our two algorithms through the lens of line cooking. To make a
pizza, we must:

1. Flatten the dough
2. Apply the toppings
3. Bake in the oven

If we need to make four pizzas without parallelization, it will look like this:

This takes 12 total steps. Can parallelization do better?
22

Pipelining

23

Pipelining Definition

One algorithmic process that simplifies
parallel algorithm design is pipelining. In
this process, you start with a task that
repeats the same procedure over many
different pieces of data.

The steps of the procedure are split across
different cores. Each core is like a single
worker on an assembly line; when it is
given a piece of data it executes the step,
then passes the result to the next core.

Just like in an assembly line, the cores can
run multiple pieces of data simultaneously
by starting new computations while the
others are still in progress.

24

Pizza Pipelining - 3 workers, 1 oven, 6 time-steps

Worker 1:

Worker 2:

Worker 3:

25

Each worker has one task. #1 flattens dough, #2 arranges toppings, #3 bakes in the oven.
There are still 12 total steps, but there are only 6 time-steps.

Rules for Pipelining

When designing a pipeline, it's important to remember that each step
relies on the step that came before it. You cannot start applying
toppings until the dough has been flattened.

Additionally, the length of time that the pipelining process takes
depends on the longest step. If flattening dough and applying toppings
are fast (maybe 5 minutes each) but cooking in the oven is slow (maybe
20 minutes), the whole process will have to wait on the slowest step to
conclude.

26

Benefits of Pipelining

Pipelining is most useful when the number of shared resources is
limited. For example, in pizza-making we may have only one oven;
using pipelining ensures that we are constantly making use of the oven
without wasting time.

Pipelining is also useful for tasks that require setup time, but then can
run many times without further setup - maybe for flattening, the cook
only has to clean the counter and flour it once.

27

Another Example: Laundry Without Pipelining

You probably already use pipelining when you do laundry. Let's look at an example
where we assume you need to wash, dry, and fold several loads of laundry.
Washing [W] takes 30 minutes; drying [D] takes 45; folding [F] takes 15.

If you don't use pipelining and wait until a load of laundry is folded before starting
the next one, doing four loads of laundry takes six hours.

28

W D F W D F W D F W D F

0 30 60 90 120 150 180 210 240 270 300 330 360min

Example: Laundry With Pipelining
To use pipelining, split the three steps of the laundry process across three workers: the washer, dryer, and
folder. Each worker has a lock on the shared resource.

With pipelining, four loads of laundry only takes 3 hours and 45 minutes. Much faster!

[In reality, you alternate between these tasks and the machines do the work; you just start the machines.
So the machines are the workers in this scenario.]

29

W
D

F

W
D

F

W
D

F

W
D

F

0 30 60 90 120 150 180 210 240 270 300 330 360min

Activity: Design a Pipeline

The process of writing a thank-you card has three sequential steps: Writing the note [10min],
Adding the address to the envelope [6min], and Stuffing the envelope [6min]. Because you
hate writing thank-you cards, you've decided to hire two helpers (your younger siblings) to help
with the work.

You need to write all the notes yourself, to make sure they're personalized, but you can
outsource the other tasks to the helpers once the card has been written

By yourself, you can write 2 full thank-you cards in an hour (plus part of a third). If you use
pipelining and the three workers (yourself + two helpers), how many completed thank-you
cards can you make in an hour?

Hint: try drawing this out the way we drew out the washer/dryer/folder example, but with
writer/adder/stuffer as the three roles. 30

Pipelining in Computer Science

Pipelining is used to increase the efficiency of certain operations in
computer science, like matrix multiplication. It's also used in the Fetch-
Execute cycle, which is how the CPU processes instructions.

Pipelining is often combined with multiprocessing to split the
operations being performed across multiple cores. This helps ensure
that no core goes unused.

31

MapReduce

32

MapReduce Organizes Concurrency

Another popular algorithm for organizing parallelized programs is called
MapReduce. Instead of breaking up a procedure's steps across
different cores, this algorithm takes a large data set and breaks up the
data itself across the cores.

This is a really effective approach if you have a lot of cores to work with
(like in distributed computing). It's also a great approach for any
problem over big data – that is, giant data sets that take far too long to
process sequentially.

33

MapReduce - 4 workers, 4 Ovens, 3 time-steps
Worker 1:

Worker 2:

Worker 3:

Worker 4: 34

Each worker
makes one pizza
instead of doing
one task
repeatedly.

If we have infinite
ovens and infinite
workers, we can
make as many
pizzas as we want
in just 3
time-steps!

Making MapReduce Algorithms

The MapReduce approach is simple enough that we can discuss how to build
algorithms that actually use it.

A MapReduce algorithm is composed of three parts.
• The mapper takes a piece of data, processes it, and finds a partial result
• The reducer takes a set of results and combines them together
• The manager moves data through the process and outputs the final result

• Splits up data, sends to mappers, get results back
• Combines results together, sends to the reducer
• Gets the final result, outputs it

35

MapReduce Example: Search – Mapper

Let's say we want to search a book for a
specific word. How can we split up this
task?

First, the manager divides the book into
many small parts- maybe one page per
part. It sends each page to a different
computer.

Each computer runs its copy of the
mapper on its page. It returns True if it
finds the result, and False otherwise.
These results are sent back to the
manager.

36

Manager

Computer 1

Computer 2 Computer 3

Computer 4

da
ta1

da
ta

2 data3

data4

mapper(data1)

mapper(data2) mapper(data3)

mapper(data4)

False

Fa
lse

True

False

MapReduce Examples: Search – Reducer

Once all the mappers have returned
their results the manager puts them all
in a list and sends that list to the
reducer(s). The reducer combines the
results together in some way.

There can be more than one reducer if
there are lots of results to combine or if
we're checking multiple things (like
searching for more than one word). For
now, we'll just use one.

Our reducer will check all of the results
and send True back to the manager if
any of them are True.

37

Manager

Computer 1

reducer(result)

[F
al

se
, F

al
se

, T
ru

e,
 F

al
se

]

True

Coding MapReduce

We've provided a version of the MapReduce
manager on the course website that uses
multiprocessing to run the algorithm on several
cores at the same time.

That makes implementing MapReduce easy- we
just need to write code for the mapper and the
reducer.

It's hard to tell that the system uses
multiprocessing, but we can print out partial
work to show what's happening. You need to
end the process (by clicking the 'Terminate and
restart the interpreter' button) to see what was
printed in the individual calls.

Assume the page is in a file
def mapper(f, target):
don't worry about reading/cleaning files
yet – we'll get there soon!
text = cleanFile(readFile(f))
words = text.split(" ")
for i in range(len(words)):
word = words[i]
if word == target:
print("file", f, "found on word #", i)
return True

print("file", f, "didn't find it")
return False

If the word is on any page, return True
def reducer(lst):

print("reducer is checking", lst)
for pageResult in lst:

if pageResult == True:
return True

return False
38

MapReduce Efficiency

MapReduce can process huge data
sets and get results quickly because it
takes a list of length N and breaks it up
into constant-size parts.

The core assumption is that we have
enough computers to make the data
pieces really small. If we process 1
million data points with 100,000
computers, each computer only needs
to handle 100 data points.

This is similar to the logic behind
hashing!

1

100

10000

1000000

100000000

1E+10

1E+12

1000 1000000 1000000000 1E+12

Runtime of Search with N={1000,1M,1B,1T} items

LinearSearch MapReduceSearch

39

Another Example: Counting

What if we instead wanted to count the number of words across all of
Wikipedia?

First, the manager breaks up the data- maybe each Wikipedia entry goes to a
computer.

The mapper can take a single page and count all the words on it.

The manager takes all those counts and puts them in a list.

The reducer takes the list of numbers and returns their sum.

40

Activity: MapReduce the Class (if time)

Let's use MapReduce to determine how many students in 15-110 belong to
each school.

The instructor (the manager) will break the room into groups of 10-20
people each. Designate one person in each group as the notetaker (the
mapper). That person must tally how many people in the group are in each
of the 7 CMU schools (CIT, CFA, Dietrich, Heinz, MCS, SCS, and Tepper).

When the mappers are done, the notetakers will pass their papers to the
instructor (the manager), who will pass them off to someone else (the
reducer) to combine into one final tally.

41

Learning Goals

• Recognize certain problems that arise while multiprocessing, such as
difficulty of design and deadlock

• Create pipelines to increase the efficiency of repeated operations by
executing sub-steps at the same time

• Use the MapReduce pattern to design parallelized algorithms for
distributed computing

Feedback: https://bit.ly/110-s22-feedback

42

https://bit.ly/110-s22-feedback

