
Search Algorithms II
15-110 – Monday 03/14

Announcements

• HW4 Partial due Thursday noon, HW4 Full due Monday noon
• When working on the coding questions, start from the class examples and

read the question prompts thoroughly
• Midsemester Feedback Forms are also due Monday [optional]

• Check3/Hw3 revision deadline Thursday at noon

• Quiz3 on Friday
• Review session: NSH 3305 from 6 PM on Wed, March 16th

• Solutions tomorrow on website; all other material already on website

2

Announcements

• Final exams dates are released!
• 15-110's exam: Monday, May 2, 2022 8:30am-11:30am
• DO NOT BOOK TRAVEL BEFORE THE EXAM. We do not let students take the

exam early.

3

Learning Objectives

• Identify whether a tree is a binary search tree

• Search for values in BSTs using binary search

• Analyze the efficiency of binary search on a balanced vs. unbalanced BST

• Search for paths in graphs using breadth-first search and depth-first search

• Analyze the efficiency of BFS and DFS on a graph

4

Binary Search Trees

5

Revisiting Search Algorithms

Recall the first lecture on Search Algorithms, when we discussed linear
and binary search.

We've applied these algorithms to lists; can we apply them to other
data structures too? Let's investigate how to search a tree.

6

Linear Search on a Tree

In linear search, we step through each element
in a list until we either find the target item or
run out of items to look at.

To visit all nodes in a tree, check if each node is
the target, then check whether the target is in
one of the node's child subtrees. If we find the
target in either subtree, we should return True.

We also have two base cases: one for when we
reach an empty tree, and one for when we find
the target. In both cases, we know what to
return right away.

def search(t, target):

if t == None:

return False
elif t["contents"] == target:

return True
else:

return search(t["left"], target) or \

search(t["right"], target)

7

Binary Search on a Tree

How would we apply Binary Search to a tree?

First, recall that for binary search to work, the input list must be sorted.
We'll also need to find a way to "split" the tree similarly to how we split
the list in binary search.

Discuss: how could we "sort" and "split" a tree?

8

Binary Search Trees (BSTs) are "sorted"

We'll define a new kind of tree, a Binary
Search Tree, as a binary tree that follows
these constraints:

For every node n in a tree which has a value v:

• Each left child (and all its children, etc.)
must be strictly less than v

• Each right child (and all its children, etc.)
must be strictly greater than v

Note: the left and right subtrees are BSTs! BST
constraints are recursive.

9

7

3 8

6 92

4

71

6

9

8

3

Example: Is this a BST?

10

3

51

4

6

82

Binary Search Trees Can Use Binary Search

When we want to search for the value
5 in the tree to the left, we start at the
root node, 7. Because all nodes less
than 7 must be in the left child tree and
5 is less than 7, we only need to search
the left child tree.

Then, when we compare 5 to 3, we
know that all values greater than 3 (but
less than 7) must be in the right child of
3. 5 is greater than 3, so we only need
to search the right child.

We 'split' the tree by only looking at
one of the node's two children.

11

7

3 8

6 92

7

3

6

BST Search in Python

We would write binary search for a BST as follows:

def search(t, target):
if t == None:

return False
elif t["contents"] == target:

return True
elif target < t["contents"]:

return search(t["left"], target)
else:

return search(t["right"], target)

Note that we do just one recursive call, either on the left subtree or on the right subtree.

12

BST Search Runtime – Balanced Trees

Do we get the same O(log n) runtime for
BST binary search that we did for list binary
search? It depends on the tree.

A tree is balanced if for every node in the
tree, the node's left and right subtrees are
approximately the same size. This results in
a tree that minimizes the number of
recursive levels.

Every time you take a search step in a
balanced tree, you cut the number of nodes
to be searched in half. This means that the
algorithm will indeed take O(log n) time.

13

6

3 8

5 92 7

BST Search Runtime – Unbalanced Trees

A tree is considered unbalanced if at least
one node has significantly different sizes in
its left and right children. For example,
consider the tree on the right.

This is a valid BST, but it is still difficult to
search! You must visit every single node to
determine a number like 6 isn't in the tree.
In the worst case, this can still take O(n)
time.

When we put data into BSTs, we usually
strive to make them balanced to avoid
these edge cases. For efficiency purposes,
assume our BSTs are balanced and the
worst case is O(log n).

14

9

8

5

3

7

Benefits of BSTs

At first glance, BSTs may seem less useful than sorted lists. However, they have a
few added perks!

BSTs make it much easier to add new data to a dataset. In a sorted list, you would
need to slide a bunch of values over to make room for a new value; in a BST, you
can just run a search for this new value. When you reach a leaf, add a node with the
new value.

This is very helpful for systems like hospital priority queues, where patients
frequently need to be moved around the queue based on changing circumstances.

In general, try to choose a data structure that matches the task you need to solve.

15

Breadth-First Search and
Depth-First Search

16

Searching a Graph for a Node

Determining whether a node exists in a graph is really easy given our
dictionary structure: just check whether the node exists in the graph's
keys.

def search(g, node):
return node in g

Finding a node is too easy. Let's ask a more interesting question.

17

Searching a Graph for a Path

We now know about several data types that connect the data points in the
structure (trees and graphs). We can search these structures to see if they contain a
specific point of data, but it may be more interesting to see whether there is a
connection between two nodes in the structure.

In other words: can we find a path that leads from a start node to a target node in
the tree/graph?

This is useful in several contexts, including:
• finding walking/driving routes through a city
• contact tracing to identify people who are at risk
• flood fill in a paint application

18

How to Search for Paths?

Recall that the computer can't 'see'
graphs the way we do; for each node in
the graph, it only sees the neighbor
nodes that are directly connected. We
need to run a systematic search to
determine if two nodes are connected
or not.

We'll need to start at the start node and
repeatedly follow the edges to find all
the other nodes it's connected to. Let's
discuss two common approaches for
deciding which order to visit the
connected nodes in.

19

A

B

E

H

C

G

2

5

D F

?

?

?

?

Two Search Algorithms: BFS and DFS

In Breadth-First Search (BFS), we slowly move outwards in the graph/tree
from the start node. We visit all the neighbors of start, then visit all the
neighbors of the already visited nodes, etc., until we've checked all the
nodes that were connected to the start node of the graph/tree.

BFS is useful for finding targets that should be nearby (like directions to a
location within a 5 mile radius).

In Depth-First Search (DFS), we go all the way down one potential path, then
backtrack and try other possible paths. So we choose one neighbor, then
choose one of its neighbors, etc., until there are no unvisited neighbors left,
then backtrack.

DFS is useful for finding targets that are far away in a specific direction (like a
route that goes straight across the United States east-to-west).

20

Breadth-First Search Example

Let's consider Breadth-First Search on our
example graph, starting from A and
searching for C.

A has two neighbors, B and G. We can
visit B and then G, or G and then B.

Once both have been visited, we visit B
and G's neighbors – C, E, and H. (A is a
neighbor as well, but we don't visit it
because it's been visited before.) As soon
as we reach C, we've found the node, and
we're done- a path exists!

21

A

B

E

H

C

G

3

2

1
D F

B

A

G

C

Breadth-First Search Example

Now let's run Breadth-First Search starting
from A and searching for a value not
connected to it, D.

A has two neighbors – B and G. As before, we
can visit B and then G, or G and then B.

Once both have been visited, we visit B and
G's neighbors – C, E, and H. Again, these can
be visited in any order (CEH, CHE, ECH, EHC,
HEC, HCE). We don't revisit A.

At this point, there are no nodes left that are
neighbors of C, E, and H and have not been
visited. We conclude there is no path from A
to D.

22

A

B

E

H

C

G

3

2

4

1

5

D F

A

B

E

H

C

G

Depth-First Search Example

Now let's search the example graph
starting from A with depth-first search,
searching for C.

There are two possible starting routes: B
or G. Let's choose B. We'll store G as a
backup option in case we run into a
dead end.

From B, we only have one unvisited
neighbor: C. We've found the node
we're looking for, so we're done!

23

A

B

E

H

C

G

2

1
D F

G

B

C

A

5

Depth-First Search Example

What if we search the example graph starting from
A with depth-first search, now looking for D?

There are two possible starting routes: B or G.
Choose G, and place B in the backup list.

From G, we have two possible routes, E or H;
choose H and mark E as backup. Note that A is not
a valid choice, as it's already been visited.

From H, we have two more possible routes: E or C
(G is not valid). We'll choose C and put E on the
backup list again. C's only remaining neighbor is B
(H is not valid), so we must visit it.

Now B has no unvisited neighbors remaining (A and
C are both visited), so we must backtrack to the last
node that had an unvisited neighbor. If we check
our backup list, the only unvisited node remaining
is E (which was G and H's neighbor). We visit E, and
we're done. There is no path from A to D. 24

A

B

E

H

C

G

3

4

1 2

D F

B

EE

H

A

G

C

B

E

Activity: BFS and DFS Tracing

Given the graph to the right and
starting from A while searching for
G, what is a valid trace for
Breadth-First Search, and what is a
valid trace for Depth-First Search?

Visit neighbors alphabetically
(while following the search rules)
to make things simpler.

25

C

A
B

D

E

F

Coding BFS and DFS

To code these search algorithms, we'll need to keep track of two pieces of
data. One is the nodes we need to search next. The other is the nodes
we've already visited. It's important to keep track of what we've visited so
far to avoid cycling back to nodes we've seen before and looping forever!

We'll use a while loop to iterate over the nodes we need to search and
update the list as we go. Each iteration will check the next node on the
to-search list to see if it's the end node we're looking for.

If we find the end node, we'll return True right away (a path is possible;
making that path is out of scope for this class). If we're on a different node,
we'll add all of its unvisited neighbors to the to-visit list. How we add the
nodes changes based on whether we implement BFS or DFS.

26

Breadth-First Search Code

27

Note that in the BFS code, we add neighbors of each node we visit to the end of the to-visit list. This
prioritizes neighbors that are connected earlier in the graph/tree.

def breadthFirstSearch(g, start, target):
Set up two lists for visited nodes and to-visit nodes
visited = []
nextNodes = [start]

Repeat while there are nodes to visit
while len(nextNodes) > 0:

next = nextNodes[0]

if next == target: # If it's what we're looking for- we're done!
return True

else: # Otherwise, add unvisited neighbors
for node in g[next]:

if node not in visited and node not in nextNodes: # Not seen before
nextNodes = nextNodes + [node] # Add to the BACK of the list

nextNodes.remove(next)
visited.append(next) # We've visited the node now

return False # When no nodes left- we're done!

Depth-First Search Code
In the DFS code, we add neighbors of each node we visit to the front of the to-visit list. This prioritizes
neighbors that are connected deeper inside the graph/tree. Otherwise, the algorithm is the same.

def depthFirstSearch(g, start, target):
Set up two lists for visited nodes and to-visit nodes
visited = []
nextNodes = [start]

Repeat while there are nodes to visit
while len(nextNodes) > 0:

next = nextNodes[0]

if next == target: # If it's what we're looking for- we're done!
return True

else: # Otherwise, add unvisited neighbors
for node in g[next]:

if node in nextNodes: # seen before, but higher-priority now
nextNodes.remove(node)

if node not in visited and node not in nextNodes: # Not seen before
nextNodes = [node] + nextNodes # Add to the FRONT of the list

nextNodes.remove(next)
visited.append(next) # We've visited the node now

return False # When no nodes left- we're done! 28

BFS / DFS Efficiency

If we only consider the worst case scenario and measure efficiency
based on the number of nodes visited, BFS and DFS look the same.

The worst case is when there is no path between the start and target
node, but every other node in the graph is connected to the start. In
either algorithm we would need to visit every single node to determine
that there is no path. The overall efficiency is O(n).

... or is it?

29

Same Nodes, Different Edges

It's possible for us to visit a node more
than once in BFS or DFS if it appears
multiple times in neighbor lists. For
example, consider the two graphs to the
right. Each has the same number of nodes.

The upper graph is heavily connected –
every node is connected to every other
node. For each node we visit we must
verify that every other node in the graph
is already in the visited or to-visit list.

In the lower graph we only need to deal
with two neighbors per node. There are
fewer repeats.

30

A

B

H

C

G

A

B

H

C

G

Edges Affect Efficiency

The efficiency of BFS/DFS is affected by the number of edges in the
graph, just like how BST search was affected by how balanced the tree's
edges were! When it comes to determining efficiency, edges matter.

As with BSTs, we'll simplify things for this class. We'll assume that the
number of edges each node has is constant. Then the runtime for BFS /
DFS can still be O(n).

31

Learning Objectives

• Identify whether a tree is a binary search tree

• Search for values in BSTs using binary search

• Analyze the efficiency of binary search on a balanced vs. unbalanced BST

• Search for values in graphs using breadth-first search and depth-first search

• Analyze the efficiency of BFS and DFS on a graph

Feedback: https://bit.ly/110-s22-feedback
32

https://bit.ly/110-f21-feedback
https://bit.ly/110-s22-feedback

