
Runtime and Big-O Notation
15-110 – Friday 02/25

Announcements

• Hw3 due Monday at noon
• Make sure you start early!
• If you can't finish everything, don't panic- submit what you've got, then finish

the rest later as a revision
• Note on Academic Integrity: Better to submit something half working than

something that you did not create!

• Quiz2 grades to be released sometime this weekend
• Videos to go over solutions for #1 and #2 will be available this weekend

2

Learning Objectives

• Identify the worst case and best case inputs of functions

• Compare the function families that characterize different functions

• Calculate a specific function or algorithm's efficiency using Big-O
notation

3

Efficiency = Time = Money

We talk about efficiency a lot in this unit. Why do we care?

Computers are fast, but they can still take time to do complex actions.
Faster algorithms can save lives, increase company profits, and reduce
user frustration.

A major goal of computer scientists is not just to make algorithms that
work, but algorithms that work efficiently.

4

Comparing Search Algorithms

5

Comparing Linear vs. Binary vs. Hashed Search

Recall our comparisons of linear search vs. binary search vs. hashed search in
the previous lectures. How can we compare these algorithms at an abstract
level?

We could run them on the same input and time them. However, how quickly
a program runs varies based on lots of factors (the implementation, the
machine, which other programs are running, etc.)

Instead, we'll choose some meaningful action that occurs in the program
and count the number of actions the program takes on a given input.

We'll start by just comparing linear vs. binary search, then add in hashed
search at the end.

6

Counting the number of actions

What actions might we count? Some lines of code may compose multiple
operations into one line, and some actions may take longer than others to
execute on the computer's hardware.

Instead of trying to count every action the computer takes, we choose some
specific action and count how many times the algorithm runs that action
based on the size of the input.

For example, in linear or binary search we can count the total number of
comparisons that the algorithms make to find an item based on the number
of items in the list.

7

1st 4th 3rd 2n
d

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Linear vs. Binary Search: Search for 66
def linSearch(lst, target):
if len(lst) == 0:
return False

elif lst[0] == target:
return True

else:
return linSearch(lst[1:], target)

How many list elements are compared to
66?

linear search: 9 times
binary search: 4 times

def biSearch(lst, target):
if lst == []:

return False
else:

mid = len(lst) // 2
if lst[mid] == target:
return True

elif target < lst[mid]:
return biSearch(lst[:mid], target)

else: # lst[mid] < target
return biSearch(lst[mid+1:], target)

8

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Best Case, Worst Case

9

Best Case and Worst Case

To truly compare the algorithms, it isn't enough to test them on a
random example. We want to know how they'll do in the best case and
in the worst case. Those cases are defined based on the inputs to the
function.

Best case: an input of size n that results in the algorithm taking the
least steps possible.

Worst case: an input of size n that results in the algorithm taking the
most steps possible.

10

Best Case and Worst Case – Linear Search

What's the best case for linear search?
Answer: a list where the item we search for is in the first position

What's the worst case for linear search?
Answer: a list where the item we search for is not in the list.

11

Best Case and Worst Case – Binary Search

You do: what's the best case input and worst case input for binary
search if we're counting comparisons?

12

Best Case/Worst Case Actions

How many actions do we perform in the best case?
For both linear search and binary search, there's just one
comparison – a list of any length in which it finds the item with the
first comparison.

How many actions in the worst case?
In linear search, we have to check every single element. If the list
has n elements, we do n comparisons.
What about binary search?

13

Worst Case Action Count – Binary Search
Each call to binary search compares one item of the list. How many recursive calls
(and therefore comparisons) do we make to binary search for different length lists?

14

List size Number of recursive calls
1 1

22-1 = 3 2
23-1 = 7 3

24-1 = 15 4
25-1 = 31 5
2k - 1 k

n log2(n)

When the input length
doubles, linear search
does twice as many
comparisons.

But, when the input length
doubles, binary search
does just one more
comparison!

Sidebar: Calculating Efficiency

Our implementation of binary search only looks better than our
implementation of linear search because we only count comparisons.

Slicing a list also takes additional work, as the computer needs to
create a copy of the list. Our recursive implementations of linear and
binary search both slice the list on every call.

This is inefficient – we're doing more work than we need to! A better
approach would be to pass the reference of the original list and change
the indexes checked instead of changing the list itself.

15

Function Families

16

Function Families

When we count the actions taken by algorithms, we don't really care about
one-off operations; we care about actions that are related to the size of the
input.

In math, a function family is a set of equations that all grow at the same rate
as their inputs grow. For example, an equation might grow linearly or
quadratically.

When determining which equation family represents the actions taken by an
algorithm, we say that n is the size of the input. For a list, that's the number
of elements; for a string, the number of characters.

17

Common Function Families

25

n (amount of data)

Number of
Operations

Exponential

Constant
Logarithmic

Quadratic

Linear

18

Function Families and Constants

19

Notice that as n grows, the
two linear functions
become larger than the
logarithmic function and
the linear * logarithmic
function becomes larger
than both linear functions,
regardless of the constants.

logarithmic

linear

linear

lin
ear *

 lo
garith

mic

Function Family Comparisons

20

Even for small n,
exponential functions
quickly skyrocket and
quadratic functions
grow rapidly compared
to linear functions.

ex
po

ne
nt

ia
l

qu
ad

ra
tic

linear

Alternate Visualization
Here's another way to think about the function families. Consider what happens when you
double the size of the input.

21

Constant double input, no
change in actions

Input Size Actions Taken

Logarithmic double input,
+1 action

Linear double input,
double actions

Quadratic double input,
quadruple actions

Exponential double input, many
many more actions!

Big-O

22

Big-O Notation

When we determine a program or algorithm's runtime, we ignore
constant factors and smaller terms. All that matters is the dominant term
(the highest power of n), the function family. That is the idea of Big-O
notation.

23

f(n) Big-O
n O(n)

32n + 23 O(n)
5n2 + 6n - 8 O(n2)

18 log(n) O(log n)

Unless specified otherwise, the
Big-O of an algorithm refers to its
worst case run time (computer
scientists are pessimists).

Caveat: this is a simplified definition. If you take other CS
classes, you'll learn more about how Big-O actually works.

Big-O of Linear Search / Binary Search

Because runtime for linear search is proportional to the length of the
list in the worst case, it is O(n). Every time we double the length of the
list, binary search does just one more comparison in the worst case; it
is O(log n).

24

Except for very small n,
binary search is blazingly
faster. Linear search is
exponentially slower in
the worst case!

Big-O of Hashed Search

What happens to the runtime of hashed search when we double the
size of the hashtable?

It doesn't change! We designed hashed search so that there would
always be a constant number of elements per bucket. No matter how
many elements are in the table, we'll always perform the same steps:
hash the sought element and visit the relevant index.

Hashed search is constant time, or O(1). That's even faster than binary
search!

25

Searching Dictionaries vs. Lists

Recall the built-in operator in, which checks for membership in a data
structure.

item in lst runs in linear time if lst is a list, because Python can't
guarantee that the list is sorted. It uses linear search.

item in dict runs in constant time if dict is a dictionary due to hashing.

If you know that you'll need to do a lot of searching for specific values, it's
better to store your data in a dictionary than a list, even if its a sorted list.

26

Big-O Calculation Strategy

We'll often need to calculate the Big-O of an algorithm or a piece of
code to determine how efficient it is and whether we can make it
better.

We can determine an algorithm's Big-O by determining how many
actions are added if we increase the size of the input. We can often do
a rough estimate of actions by just counting the number of statements
that will run.

Let's go through a bunch of examples to demonstrate.

27

O(1) is Constant Time

def swap(lst, i, j):
tmp = lst[i]
lst[i] = lst[j]
lst[j] = tmp

28

Does the runtime of this
algorithm depend on the
number of items in the list?

Answer: No.

This algorithm is constant time
or O(1), like hashed search; its
time does not change with the
size of the input.

O(log n) is Logarithmic Time

def countDigits(n):
count = 0
while n > 0:

n = n // 10
count = count + 1

return count

29

Every time you increase n by a factor of 10,
you do the loop one more time. All the
operations in the loop are constant time.
Analogous to binary search, the algorithm is
logarithmic time, or O(log n).

Why? O(log 2n) = O(log n) + 1 - you add one
action per doubling of the input.

Even though this is log10(n), we don't include
the base in the Big-O notation because a
change of base is just a multiplicative factor.

O(n) is Linear Time

def countdown(n):
for i in range(n, -1, -5):

print(i)

30

If we double the size of n, how many
more times do we go through the
loop?

Answer: We double the number of
times through the loop. That is linear
time, or O(n), as it is proportional to
the size of n. Stepping by 5 doesn't
change the function family.

Note that O(2n) = O(n) + O(n)

O(n2) is Quadratic Time

def multiplicationTable(n):
for i in range(1, n+1):

for j in range(1, n+1):
print(i, "*", j, "=", i*j)

If we double the size of n, we execute the outer loop twice as many times.
And for each time we execute the outer loop, we execute the inner loop
twice as many times. Generating the table takes 4 times as long. This is
quadratic time, or O(n2).

Every time you add a new element, 1 action is added to each iteration of the
inner loop and 1 iteration is added to the outer loop (n+1 actions). That's
2n+1 new actions added. O((n+1)2) = O(n2) + 2n + 1.

31

O(2n) is Exponential Time

def move(start, tmp, end, num):
if num == 1:

return 1
else:

moves = 0
moves = moves + move(start, end, tmp, num - 1)
moves = moves + move(start, tmp, end, 1)
moves = moves + move(tmp, start, end, num - 1)
return moves

32

This is Towers of Hanoi. Every
time we add 1 disc we double the
number of moves. That's
exponential time, or O(2n).

O(2n+1) = O(2n) + O(2n)

For Recursion, Look at the Number of Calls
Is all recursion exponential? Not necessarily! It depends on the number of recursive calls
the function will need to make.

def countdown(n):
if n <= 0:

print("Finished!")
else:

print(n)
countdown(n - 5)

Consider the example above. If you call the function on 100, it will make the next call on
95, then 90, etc; 20 total calls will be made. If you double the input, 40 calls will be made.
The function is O(n).

33

Be Careful of Built-in Runtimes!

def countAll(lst):
for i in range(len(lst)):

count = lst.count(i)
print(i, "occurs", count, "times")

This is actually O(n2), because each call to lst.count(i) takes O(n) time.

We'll let you know on assignments and quizzes when a built-in method or
operation is not constant time.

34

Activity: Calculate the Big-O of Code

Activity: predict the Big-O runtime of the following piece of code.

def sumEvens(lst): # n = len(lst)
result = 0
for i in range(len(lst)):

if lst[i] % 2 == 0:
result = result + lst[i]

return result

35

Learning Objectives

• Identify the worst case and best case inputs of functions

• Compare the function families that characterize different functions

• Calculate a specific function's efficiency using Big-O notation

Feedback: https://bit.ly/110-s22-feedback

36

https://bit.ly/110-s22-feedback

