
Quiz2 & Activity:
Designing Super-Fast Search

15-110 – Wednesday 02/23

Quiz2

2

Announcements

• Check3 grades released:
• On Canvas tomorrow with Quiz

3

Learning Objectives

• Recognize the requirements for building a good hash function and a
good hashtable that lead to constant-time search

4

Activity: Designing Fast Search

Last week we talked about two search algorithms: linear search and
binary search. Binary search is faster than linear search, but can we do
even better?

We can often increase the efficiency of an algorithm by thinking about
the problem in a different way. Try using a different data structure or
an entirely different algorithmic approach to solve the problem.

Our question today is: can we design the fastest possible search
algorithm?

5

Optimizing Search: Constraints

6

Search in Real Life – Post Boxes

Consider how you receive mail. Your mail is sent
to the post boxes at the lower level of the UC.
Do you have to check every box to find your
mail?

No- just check the one assigned to you.

This is possible because your mail has an
address on the front that includes your mailbox
number. Your mail will only be put into a box
that has the same number as that address, not
other random boxes.

Picking up your mail is a fast operation!
7

Search in Programming – List Indexes

We can't search a list for an item that
quickly, but we can look up an item
based on an index with just a few
steps.

Reminder: Python stores lists in
memory as a series of adjacent parts.
Each part holds a single value in the
list, and all these parts use the same
amount of space.

Example:
lst = ["a", "abc", True]

8

lst

"a" "abc" True

Search in Programming – List Indexes
We can calculate the exact starting location of a list
index's memory address based on the first address
where lst is stored. If the size of a part is N, we can
find an index's address with the formula:

start + N * index

Example: in the list to the right, each part is 8 bytes in
size and the memory values start at 0800. To access
lst[2], compute:

0800 + 8 * 2 = 0816

Given a memory address, we can get the value from
that address with one calculation. Looking up an index
in a list is fast!

8
bytes

8
bytes

8
bytes

9

lst

"A" "B" "C" "D" "E"
0800 8

bytes
8
bytes

Combine the Concepts

To implement constant-time search, we want to combine the ideas of
post boxes and list index lookup. Specifically, we want to determine
which index a value is stored in based on the value itself.

If we can calculate the index based on the value, we can retrieve the
value really quickly, without needing to check other indexes.

10

Hash Functions Map Values to Integers

In order to determine which list index should be used based on the
value itself we'll need to map values to indexes (integers).

We call a function that maps values to integers a hash function. This
function must follow two rules:

• Given a specific value x, hash(x) must always return the same output i

• Given two different values x and y, hash(x) and hash(y) should usually
return two different outputs, i and j

11

Built-in Hash Function

We don't need to write our own hash function most of the time-
Python already has one!

x = "abc"
hash(x) # some giant number

hash works on integers, floats, Booleans, strings, and some other
types as well.

12

Optimizing Search: Hashtables

13

Hashtables Organize Values

Now that we have a hash function, we can
use it to organize values in a special data
structure.

A hashtable is a list with a fixed number of
indexes. When we place a value in the list,
we put it into an index based on its hash
value instead of placing it at the end of the
list.

We often call these indexes 'buckets'. For
example, the hashtable to the right has four
buckets. Important: actual hashtables have
far more buckets than this.

14

index 0 index 1 index 2 index 3

Adding Values to a Hashtable
For simplicity, let's say this hashtable uses a
hash function that maps strings to indexes
using the first letter of the string, as shown
to the right. (This is not a good hash
function, but it will serve as an example).

First, add "book" to the table.
hash("book") is 1, so we'll put the value
in bucket 1.

Next, add "yay". hash("yay") is 24,
which is outside the range of our table.
How do we assign it?

Use value % tableSize to map integers
larger than the size of the table to an index.
24 % 4 = 0, so we put "yay" in bucket 0. 15

def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"book""yay" "book"

Dealing with Collisions
When you add lots of values to a hashtable, two
elements may collide. This happens if they are
assigned to the same index. For example, if we
try to add both "cmu" and "code" to our table,
they will collide.

Hashtables are designed to handle collisions.
One algorithm for handling collisions is to put
the collided values in a list and put that list in
the bucket. If your table size is reasonably big
and the indexes returned by the hash function
are reasonably spread out, each bucket will
normally hold a small number of values.

Our example hash function is not good because
it only looks at the first letter. A function that
uses all the letters would be better.

16

def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book""yay" "book" "cmu""yay" "book" "code""yay" "book" "cmu"
"code"

You Do: Search a Hashtable

Let's say that we want to
algorithmically check whether the
string "friday" is in our
hashtable.

You do: Which buckets does the
algorithm need to check?

17

def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book""yay" "book" "cmu""yay" "book" "college""yay" "book" "cmu"
"code"

Searching a Hashtable is Fast!
To search for a value, call the hash function
on it and mod the result by the table size.
The index produced is the only index you
need to check!

For example, we can check if "book" is in
the table just by checking bucket 1.

If the value is in the table, it will be at that
index. If it isn't, it won't be anywhere else
either. To check for "stella" just look in
in bucket 2.

Because we only need to check one index
and each index holds a constant number of
items, finding a value only takes a few
steps, even if the hashtable is huge.

18

def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book" "cmu"
"code"

Caveat: Don't Hash Mutable Values!

What happens if you try to put a list in a
hashtable? Let's set lst = ["a", "z"]
and use the given hash to add lst.

This might seem fine at first, but it will
become a problem if you change the list
before searching. Let's say we set
lst[0] = "d".

When we hash the list again, the hashed
value is 3, not 0. But the list isn't stored in
bucket 3! We can't find it reliably.

For this reason, we don't put mutable
values into hashtables. If you try to run the
built-in hash on a list, it will crash.

19

def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book" "cmu"
"code"

"yay"
["a", "z"]

"book" "cmu"
"code"

"yay"
["d", "z"]

"book" "cmu"
"code"

"yay"
["a", "z"]

"book" "cmu"
"code"

Dictionaries Use Hashed Search

Because hashed search requires immutable search values and a
hashtable, it isn't used in lists or strings. However, it is used to
implement dictionary search.

Recall that the keys of a dictionary must be immutable. This is because
those keys are all stored in a hashtable. Each key points to its own
value; that's how values can still be accessed.

This means that searching for a key in a dictionary is really fast!
Dictionaries are super efficient for basic lookup tasks.

20

The Power of Hashing

Hashed search is absurdly fast! It doesn't matter how large your
dataset is; you can always look up a value in the same amount of time.

This ridiculous speed of hashed search has made search a common tool
across all computational devices.

Discuss: how would your interactions on your computer, smartphone,
or other digital devices be different if search was slower? How would
this affect your day-to-day life?

21

Learning Objectives

• Recognize the requirements for building a good hash function and a
good hashtable that lead to constant-time search

Feedback: https://bit.ly/110-s22-feedback

22

https://bit.ly/110-s22-feedback

