
Week: 05 Date: 2/17/2022

15-110 Recitation Week 5

Reminders
● Check 3 due Monday 2/21 @ Noon EDT
● Check 2 and HW 2 revisions due Tuesday 2/22 @ Noon EDT
● Quiz 2 is Wednesday 2/23, same procedures as Quiz 1

o Quiz 2 review session Sat 2/19 3-4PM NSH 3305
● Code reviews 2/18 - 2/22

Overview
● Lists
● 2D lists
● Recursion (code writing)
● Aliasing



Problems

LIST CODE WRITING: ALTERNATING SUM

Write a function alternatingSum(L) that takes in a list of numbers L, and then returns the alternating

sum (where the sign switches from positive to negative or negative to positive at each index).

For example, alternatingSum([5,3,8,4]) returns 6 as (5-3+8-4) = 6

See starter file for more tests and function header!



RECURSION INTRO

General notes on recursion:

Recreate the following function using recursion (write on the right empty space):

def double(lst):

result = []

for i in range(len(lst)):

result.append(2 * lst[i])

return result

#double([1,2,3]) -> [2,4,6]

def doubleRecursive(lst):



RECURSIVE CODE WRITING

Write the function rangeSum(lo, hi) which takes in two integers (where lo <= hi) and sums all
values in between them inclusive.



LIST ALIASING

Code trace and compare the following two options for ways to create “empty” 2D lists:

Option 1:

inner = [0, 0, 0, 0]
outer = [inner, inner, inner]

Option 2:

rows = 3

outer = []

for row in range(rows):

outer.append([0, 0, 0, 0])

For each option, after running the code above, what are the values in outer?

Option 1: outer = _____________________________

Option 2: outer = _____________________________

After adding the following line of code and running it:

outer[0][0] = 42

What are the values in outer?

Option 1: outer = _____________________________

Option 2: outer = _____________________________

Be sure you can explain what difference you are seeing, and which option you should use and why.


