
Week: 04 Date: 2/10/2022

15-110 Recitation Week 4

Reminders
● HW2 due Monday 2/14 @ Noon EDT
● Recitation feedback form: https://forms.gle/L21iwvPZgr3BCaWZA

Overview
● While loops
● For Loops
● Strings

https://forms.gle/L21iwvPZgr3BCaWZA

Problems

While Loops vs. For Loops + Q/A

For loops! These allow you to set a specific range of values to iterate through ahead of time:

● General format: for i in range(x, y, z):

○ i → loop variable - contains current value of iteration

■ Can use any variable name here as long as we keep it consistent

○ range(x,y,z) → start value, end value not inclusive, step size

■ Start value is inclusive, end value is exclusive, x and z are optional

While loops! These allow you to set a certain condition under which we keep iterating.

● General format: while (condition):

○ Condition will generally be some boolean expression. As long as this expression evaluates to

True, we continue to iterate.

○ Make sure the expression evaluates to False at some point otherwise we end up in an infinite

loop!

For loop example:
for i in range(0,10,2):

print(i)

Now recall an example of a similar while loop:
i = 0

while i <= 10:

print(i)

i += 2

Note: these two examples are not equivalent! The for loop will not print 10, need to increase the end

value to greater than 10. Also after the while loop, the value of i will be 12, whereas after the for loop

(without changing the end value), the value of i will be 8.

While vs For Loops:

● For loops are used for a fixed number of iterations, help you avoid infinite loops

● While loops require declaring an iterator variable outside the loop and updating that variable

within the loop. That is abstracted away in for loops by using range()

● While loops are more versatile, condition statement gives you more flexibility

● You can write any for loop as a while loop!

Nested For Loop Practice

1. Open the week 4 starter file and run the function nestedFor() using the function calls

provided in the file. Pay close attention to the order of the print statements as that tells you the

control flow through the two loops!

2. Next, write a function oddsBefore(x) that takes in a number x and prints, on separate

lines, numbers 1 through x (inclusive) along with all the odd numbers that appear before each

number, separated by a space. If there are no odds before a given number, just print the

number. For example, if we call oddsBefore(4), we will get the following printout:

0:

1:

2: 1

3: 1

4: 1 3

Use the following algorithm:

1. Iterate over each of the numbers from 0 to x using a for loop, but be sure that the range calculated is

inclusive at the upper bound (How might we ensure inclusivity at the upper bound or range()?)

a. Inside this outer loop, create a variable, odds, for keeping track of odds in a string (Why do we

do this inside the outer loop? What would happen if we put this variable outside the outer

loop?)

b. Create another loop to iterate over all the numbers less than the current value for the outer

loop to check the previous numbers. For each number, we need to figure out how many

numbers before it are odd. Thus we need an inner loop!

i. Check if the number value of the inner iteration is odd or even. If it is odd, add it to

the odds string with a space before it (Is there anything we need to do to the number

value before adding it to the string?)

c. Print the current value for the outer loop along with the odds string.

Quick String Questions

Given the string s = “abcdefghi”, answer the following short answer questions:

1) How do I access the character “i” from string s?

2) How do I create a string x which is equal to “cdef” using s?

3) How do I create a string x which is equal to “beh” using s?

4) How do I create a string x which is equal to the reverse of s?

Strings Functions Code Writing

1. Write a function everyOther that takes in a string s and prints every other letter of s.

2. Next, write a function isSubString(sub, x) that returns the index of the start of the left-most
occurrence of a substring within a string. If the substring is not found, return -1. Assume
len(sub) <= len(x). If the substring is the empty string, return 0. For example, if x = “hello”,
then:

isSubString(“”, x) returns 0
isSubString(“h”, x) returns 0
isSubString(“e”, x) returns 1
isSubString(“l”, x) returns 2 #Note, even with 2 l’s, only the first (leftmost) is returned
isSubString(“ello”, x) returns 1

When slicing a string, you can slice using expressions as well. For example, if we want to slice the first
three letters of the string out and have an index variable y set to the value 0, we can do the following:

s = “Goodbye” #String you want to slice the first three letters out

y = 0 #Our index variable

result = s[y : y + 3] #Will evaluate to “Goo”

Because slicing will never go out of bounds, we can imagine the following algorithmic approach to the
problem:

1. Iterate over the string x
2. For every index, we check if the substring created starting from that index spanning to the

index + the length of sub is equal to sub (Why do we check using the length of sub here? How
might we use the length of sub in our slicing expression?)

a. If the substring created above is equal to sub exactly, then we can return the index
immediately

3. If the sub is not found in x, return -1 outside the loop (Why do we want to return -1 outside
the outer loop?)

