
While Loops
15-110 – Friday 02/04

Announcements

• Check2 due Monday at noon
• Note that programming starter files look a bit different starting this week – you

can test your code directly in the file

• You're encouraged to attend small group sessions to get help with the
assignments, and to get help with studying for Quiz1! In particular, the
TAs will provide more help than usual on one of the Hw2 problems in
small group sessions next week (drawIllusion). Contact your TA to
learn more!

2

Learning Goals

• Use while loops when reading and writing algorithms to repeat
actions while a certain condition is met

• Identify start values, continuing conditions, and update actions for
loop control variables

• Translate algorithms from control flow charts to Python code

• Use nesting of statements to create complex control flow

3

Repeating Actions is Annoying

Let's write a program that prints out the numbers from 1 to 10. Up to now, that would look like:

print(1)
print(2)
print(3)
print(4)
print(5)
print(6)
print(7)
print(8)
print(9)
print(10)

4

Loops Repeat Actions Automatically

A loop is a control structure that lets us repeat actions so that we don't need
to write out similar code over and over again.

Loops are generally most powerful if we can find a pattern between the
repeated items. Noticing patterns lets us separate out the parts of the action
that are the same each time from the parts that are different.

In printing the numbers from 1 to 10, the part that is the same is the action
of printing. The part that is different is the number that is printed.

5

While Loops

6

While Loops Repeat While a Condition is True

A while loop is a type of loop that keeps repeating only while a certain
condition is met. It uses the syntax:

while <booleanExpression>:
<loopBody>

The while loop checks the Boolean expression, and if it is True, it runs the
loop body. Then it checks the Boolean expression again, and if it is still True,
it runs the loop body again... etc.

When the while loop finds that the Boolean expression is False, it skips
the loop body the same way an if statement would skip its body.

7

Conditions Must Eventually Become False

Unlike if statements, the condition in a while loop must eventually become
False. If this doesn't happen, the while loop will keep going forever!

The best way to make the condition change from True to False is to use a
variable as part of the Boolean expression. We can then change the variable inside
the while loop. For example, the variable i changes in the loop below.

i = 1
while i < 5:

print(i)
i = i + 1

print("done")

8

Infinite Loops Run Forever

What happens if we don't ensure that the condition eventually becomes False?
The while loop will just keep looping forever! This is called an infinite loop.

i = 1
while i > 0:

print(i)
i = i + 1

If you get stuck in an infinite loop, press the button that looks like a lightning bolt
above the interpreter to make the program stop. Then investigate your program to
figure out why the variable never makes the condition False. Printing out the
variable that changes can help pinpoint the issue.

9

while Loop Flow Chart

Unlike an if statement, a while
loop flow chart needs to include a
transition from the while loop's
body back to itself.

i = 1
while i < 5:

print(i)
i = i + 1

print("done")

10

i = 1

if i < 5

print(i)

i = i + 1

print("done")

True False

loop body

You Do: Trace the Program

You do: if we slightly change the code from the previous program, what
happens to the program?

i = 1
while i < 5:

i = i + 1 # moved up one line
print(i)

print("done")

11

Loop Control Variables

12

Use Loop Control Variables to Design Algorithms

Now that we know the basics of how loops work, we need to write
while loops that produce specific repeated actions.

First, we need to identify which parts of the repeated action must
change in each iteration. This changing part is the loop control
variable(s), which is updated in the loop body.

To use this variable, we'll need to give it a start value, an update
action, and a continuing condition. All three need to be coordinated
for the loop to work correctly.

13

Loop Control Variables - Example

In our print 1-to-10 example, we want to start the variable at 1, and
continue while the variable is less than or equal to 10. Set num = 1 at the
beginning of the loop and continue looping while num <= 10. The loop
ends when num is 11.

Each printed number is one larger from the previous, so the update should
set the variable to the next number (num = num + 1) in each iteration.

num = 1
while num <= 10:

print(num)
num = num + 1

14

Loop Control Variables – Counting Backwards

How would we change the program if we wanted to count backwards instead? The
loop control variable is the same, but its components change.

Set num = 10 at the beginning of the loop and continue looping
while num >= 1. The loop ends when num is 0.

Each printed number is one smaller from the previous, so the update should set
the variable to the next number (num = num - 1) in each iteration.

num = 10
while num >= 1:

print(num)
num = num - 1

15

Activity: Print Even Numbers

You do: your task is to print the even numbers from 2 to 100.

What is your loop control variable? What is its start value, continuing
condition, and update action?

Once you've determined what these values are, use them to write a
short program that does this task.

16

Loops in Algorithms

17

Implement Algorithms by Changing Loop Body

Suppose we want to add the numbers
from 1 to 10.

We need to keep track of two different
numbers:

• the current number we're adding
• the current sum

Both numbers need to be updated inside
the loop body, but only one (the current
number) needs to be checked in the
condition.

result = 0
num = 1
while num <= 10:

result = result + num
num = num + 1

print(result)

18

Which is the loop control variable?

Tracing Loops

Sometimes it gets difficult to
understand what a program is doing
when that program uses loops. It can be
helpful to manually trace through the
values in the variables at each step of
the code, including each iteration of the
loop.

result = 0
num = 1
while num <= 7:

result = result + num
num = num + 1

print(result)

step result num

pre-loop 0 1

iteration 1 1 2

iteration 2 3 3

iteration 3 6 4

iteration 4 10 5

iteration 5 15 6

iteration 6 21 7

iteration 7 28 8

post-loop 28 8

19

Update Order

When updating multiple variables in a
loop, order matters. If we update num
before we update result, it changes
the value held in result.

result = 0
num = 1
while num <= 7:

num = num + 1
result = result + num

print(result)

Note: Python checks the condition only
at the start of the loop; it doesn't exit
the loop as soon as num becomes 8.

step result num

pre-loop 0 1

iteration 1 2 2

iteration 2 5 3

iteration 3 9 4

iteration 4 14 5

iteration 5 20 6

iteration 6 27 7

iteration 7 35 8

post-loop 35 8

20

Nesting Conditionals in while Loops

We showed previously how we can nest conditionals in
other conditionals to combine them together. We can do
the same thing with while loops!
For example, let's make ascii art. Write code to produce
the following printed string:

x-x-x
-o-o-
x-x-x
-o-o-
x-x-x

The loop will iterate over the rows that are printed. The
program decides whether to print the x line or the o line
based on the value of the loop control variable.
If it's even (0, 2, and 4) print x; if it's odd (1 and 3) print o.

row = 0
while row < 5:

if row % 2 == 0:
print("x-x-x")

else:
print("-o-o-")

row = row + 1

21

Nesting while Loops in Functions

We can also nest loops inside of function
definitions.

If we return inside a loop, we will
immediately exit the function- no further
iterations will run.

For example, if we want to check whether a
multiple of factor occurs within a certain
range, we can return True as soon as we
find a multiple, or False if we never find
one.

Normally you return in a conditional nested
inside the loop, not the loop body itself.

def multipleInRange(start, end, factor):

i = start

while i <= end:

print(i) # shows loop ends early!

if i % factor == 0:

return True

i = i + 1

return False

22

Input Loops

24

Coding with Multiple Data Points

We often want to be able to deal with multiple data points while
writing code.

Loops make it possible for us to repeat an action multiple times- that
should make it possible for us to get multiple data points. But how can
we receive that data?

25

input function

The built-in function input(msg) displays a message in the
interpreter, lets the user type a response in the interpreter, then
returns the response as a string when the user presses enter.

name = input("Enter your name: ")
print("Hello, " + name + "!")

This is pretty different from what we're used to, but it makes it possible
for you to write interactive programs more easily! This will also let the
user enter data interactively.

26

input Returns a String

input will always return a string. If we want to use a user's response
as a number, we need to use type-casting to change it.

age = int(input("Enter your age: "))
print("You'll be", age + 1, "next year")

This won't handle the case where the user enters something they
weren't supposed to- we'll talk more about how to handle that later.

27

Example input algorithm

We could use input to set up a basic dialogue with the user.

name = input("What's your name?")
age = int(input("Hi, " + name + "! How old are you?"))
print("Nice! I'm a computer, I don't have an age.")

28

Looping with input

The addition of the input
function, when combined with
loops, makes it possible for us to
get multiple inputs from the user
and process them like a data
stream.

We'll need to give the user a way
to signal that they're done
entering numbers. This can by
done with a special input, like the
string 'q'.

For example, this code sums the
numbers entered by the user
until they signal an end to the
numbers.

result = 0

value = input("Enter a number, or q to quit:")

while value != "q":
num = int(value)

result = result + num
value = input("Enter a number, or q to quit:")

print("Total sum:", result)

29

Learning Goals

• Use while loops when reading and writing algorithms to repeat actions while a
certain condition is met

• Identify start values, continuing conditions, and update actions for loop control
variables

• Translate algorithms from control flow charts to Python code

• Use nesting of statements to create complex control flow

Feedback: https://bit.ly/110-s22-feedback

30

https://bit.ly/110-s22-feedback

Extra Slides:
Advanced Loops in Algorithms
This content will not be tested, but is interesting to know!

31

Loop Control Variables – Advanced Example

It isn't always obvious how the start values,
continuing conditions, and update actions of a
loop control variable should work. Sometimes
you need to think through an example to make
it clear!

Example: simulate a zombie apocalypse. Every
day, each zombie finds and bites a human,
turning them into a zombie. If we start with just
one zombie, how long does it take for the whole
world (7.5 billion people) to turn into zombies?

We'll need to track and update two variables-
one for the number of zombies, one for the
number of days passed.

Loop control variable: # of zombies
Start value: 1 zombie
Continuing condition: while the number of
zombies is less than the population
Update action: double the number of zombies
every day

zombieCount = 1
population = 7.5 * 10**9
daysPassed = 0
while zombieCount < population:

daysPassed = daysPassed + 1
zombieCount = zombieCount * 2

print(daysPassed)
32

Loop Control Variables – Another Example

Example: how would you count the number
of digits in an integer?

One answer: A number abc can be written as:

a*100 + b*10 + c*1
or
a*102 + b*101 + c*100

Check each power of 10 until one is bigger
than the number. A separate variable can
track the actual number of digits counted.

Loop control variable: which power of 10 is being
checked
Start value: 1 (100)
Continuing condition: while the power of 10 isn't
greater than the number
Update action: multiply the power by 10

num = 2021
power = 1
digits = 0
while power < num:

digits = digits + 1
power = power * 10

print(digits) 33

Loop Control Variables – Another Example

Another answer: instead of comparing a
power of 10 to the number, change the
number itself.

For example, to count the digits in abc,
change:

abc ->
ab ->
a

The number of times you can divide the
number by 10 is the number of digits.

Loop control variable: the number itself
Start value: the number's initial value
Continuing condition: while the number is
not yet 0 (no digits)
Update action: divide the number by 10

num = 2021
digits = 0
while num > 0:

digits = digits + 1
num = num // 10

print(digits)

34

