
Function Calls
15-110 – Wednesday 01/26

Announcements

• HW1 due Monday 01/31. Start early!

• Recitation tomorrow, still remote

• Grades for Check 1 are out
• Can resubmit by revision deadline (02/08)
• How revision deadline works

2

Learning Objectives

• Use function calls to run pre-built algorithms on specific inputs

• Identify the argument(s) and returned value of a function call

• Use libraries to import functions in categories like math, randomness,
and graphics

3

Repeating Actions is Messy

Sometimes we want to perform the
same algorithm many times on different
inputs.

For example, say we want to
personalize a young child's reading
material so that it uses their pet's name.

We could copy and paste the first bit of
code, then change the necessary parts.
But if we're sloppy this might cause
errors.

pet1 = "Spot"
pet2 = "Stella"
pet3 = "Kimchee"

print("See " + pet1 + ". See " + pet1 +
" run. Run, " + pet1 + ", run!")

print("See " + pet2 + ". See " + pet2 +
" run. Run, " + pet2 + ", run!")

print("See " + pet3 + ". See " + pet1 +
" run. Run, " + pet3 + ", run!")

4

Functions Represent Abstract Actions

A better approach is to put the core action being repeated into a
function.

A function is a code construct that represents an algorithm. We can
define a function once, then call it many times.

We can also use functions that have already been defined by Python.

5

Function Calls

6

Call Functions with Parentheses

We've already seen how to call a function on a specific input, because
print is just a function! This is done using parentheses.

functionName(input1, input2, ...)

The number of inputs provided inside the parentheses depends on
how many inputs the function expects. Each input should be an
expression.

7

A Few New Functions

To help us explore how functions work, let's introduce a few new
functions. These are built-in functions, like print; that means we can
call them in Python directly.

abs(-2) # absolute value
pow(2, 3) # raises a number to the given power
round(12.4567, 2) # rounds to the given # sig digs

8

Type Functions

There are a few other built-in functions that are helpful to know, as they let
you change the type of data values. This is called type-casting.

int("4") # converts a value to an integer
float(3) # converts a value to a float
str(98.9) # converts a value to a string
bool(0) # converts a value to a Boolean

type(4 + 3.0) # returns the type of the eventual value
uses the names we covered before – int, float, str, bool

9

Components of Functions

The functions we call may have two core components:

Argument(s) – the values that are provided inside the parentheses, the
input

Returned Value – what the function evaluates to after running, the
output

10

Arguments Provide the Input

The specific inputs we provide to a function are called arguments. These are
like the specific bread, peanut butter, and jelly we used in the PB&J
algorithm. In the function call abs(4), the argument is 4.

Arguments are separated by commas and placed between the parentheses
of the function call. Functions can require as many (or as few) arguments as
needed.

The positions of the arguments usually have meaning. In pow(2, 3), the
first argument is the base and the second argument is the exponent. In other
words, pow(2, 3) and pow(3, 2) mean two different things.

11

Receive Output as Returned Value

When a built-in function takes its arguments and runs through its
algorithm, we cannot see what it is doing.

When the function is done, it sends back an output as a returned
value. We usually say a function returns a value. This value substitutes
in for the function call the same way a variable's value substitutes in
for the variable.

For example, the returned value of pow(2, 3) is 8.

12

Function Calls Follow Order of Operations

Function calls evaluate to a single returned value; that means they are
expressions. Therefore, we can nest function calls inside other
expressions the same way we nest basic values and operations.

print(round(pow(abs(-12), 1/2), 2))

Just like in math, functions follow order of operations using
parentheses. Start by evaluating the inner-most expressions,
abs(-12) and 1/2. Then evaluate the call to pow; then evaluate the
call to round. Finally, evaluate the call to print.

13

Activity – Write Code Using Functions

You do: write a line of code in the interpreter that takes a variable x
which holds a number as a string, turns it into an integer, and then
doubles that integer.

For example, if x = "21", then your line of code should produce 42

14

Missing Returned Values are None

If a function produces no explicit output, it still has a returned value. That
value is the built-in value None.

None means that there was no explicit output to be returned. Like True and
False, its meaning is built into Python, so it does not need quotes.

If you try to set a variable to a print call, you'll find that the variable holds
None. Note that None does not show up in the interpreter unless you
explicitly print it; the interpreter just shows a blank instead.

15

Function Call Process

16

Function

Argument(s)

Returned Value
(explicit output or

None)

Side
effect(s)

Side Effects Show Change

If print doesn't have an explicit returned value, what exactly is it doing?

Recall that a program has a state that holds the current information that the program
knows (what has been printed, what values do variables hold).

Function calls themselves are expressions, as they evaluate to a data value (the returned
value). But sometimes a function changes the program state in an observable way as it is
running; for example, it might display values in the interpreter, or modify a file, or produce
graphics. This is called a side effect.

If we call pow(2, 3), there is no observable side effect. But print("Hello") has an
observable side effect: it prints "Hello" to the screen.

17

Side Effect(s) vs Returned Value

It's easy to get confused about whether something is a side effect or a
returned value. Why are these two things different?

The way we've set up function calls means that there must be exactly one
output: the returned value. A function call might have no side effects, or
one, or many; however, every function call has one returned value.

Importantly, returned values can be saved in a variable and/or used in
future computations. Side effects cannot be saved this way; we simply
observe them.

18

Activity – Identify the Function Call Parts

Consider the following two function calls. For each function call, what
are its argument(s) and returned value? Does it have any observable
side effect(s)?

round(3.14159, 1)

print("15” + "-” + "110")

19

Libraries

20

Import Adds Code from Libraries
The Python language has a ton of pre-built functions, but most aren't included in
the built-in package (the one available by default). Most of the functions are
organized into separate libraries.

To use a function from a library, you must import the library. This makes it possible
to access the functions and variables in that collection. You can do this with the
code:

import libraryName

All the Python libraries have documentation online that describes which functions
are available and what they do. Find it by searching docs.python.org/3/ . It's better
to check the documentation as needed than to try to memorize library functions.

21

https://docs.python.org/3/

Importing the math Library

For example, we can import the math library to add more
mathematical capabilities. Note that we must put math. in front of
each function or variable name we use, to specify it came from that
library.

import math
math.ceil(6.5) # ceiling of a float number
math.log(64, 2) # finds the log of 64 with base 2
math.radians(90) # converts degrees to radians
math.pi # it's π!

22

Importing the random library

Importing libraries lets us get more creative with programming. For example, the
random library lets us generate random numbers, which can help produce novel
behavior.

import random
random.randint(1, 10) # picks a random int between 1-10 inclusive
random.random() # picks a random float between 0-1

23

Importing a graphics library

Finally, to get really creative, we can produce graphics with
programming! We'll do this with the tkinter library, which makes it
possible to draw shapes on a separate screen.

import tkinter

24

Tkinter Starter Code

We need to run some code before
and after our graphics code to make
it work.

The root is the window. The
canvas is the thing on the window
where we can draw shapes.

The root.mainloop() line will tell
the window to stay open until we
press the X button.

import tkinter

root = tkinter.Tk()
canvas = tkinter.Canvas(root,

height=400,
width=400)

canvas.configure(bd=0,
highlightthickness=0)

canvas.pack()

write your code here

root.mainloop()

25

Coordinates on the Canvas Grow Down-Right

The canvas created by the starter code is the thing we'll draw graphics on. It's a
two-dimensional grid of pixels. This grid has a pre-set width and height; the
number of pixels from left to right and the number of pixels from top to bottom.

We can refer to pixels on the canvas by their (x, y) coordinates. However, these
coordinates are different from coordinates on mathematical graphs – the origin
starts at the top left corner of the canvas.

(0, 0) (width, 0)

(0, height) (width, height)

canvas

26

Drawing a Rectangle

To draw a rectangle, use the function canvas.create_rectangle.
This function takes four required arguments: the x and y coordinates of
the left-top corner, and the x and y coordinates of the right-bottom
corner. The rectangle will then be drawn between those two points.

canvas.create_rectangle(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)

27

Keyword Arguments Add Variety

With the basic parameters, we can only draw outlines of shapes. By adding
keyword arguments, we can change the properties of these shapes.

A keyword argument is an argument that is associated with a specific name
instead of a position in the function call. We can put keyword arguments in
any order we like as long as they occur after the main arguments.

Keyword arguments can have default values, which is why we don't need to
include them in every graphics call. To change that default value, include the
keyword, followed by =, followed by the new value in the function call.

canvas.create_rectangle(50, 100, 150, 200, fill="green")

28

Keyword Argument - fill

The fill argument can be used to give a rectangle a
color. It uses a string (the name of the color) to change
the color of the shape.

Note that when we draw shapes on top of each other,
the one on top is the last one called. Order matters!

canvas.create_rectangle(40, 40, 80, 140, fill="red")

canvas.create_rectangle(30, 80, 30 + 120, 80 + 120,
fill="green")

canvas.create_rectangle(90, 70, 180, 120, fill="blue")

29

Graphics – Side Effects and Returned Values

When the rectangle is drawn on the canvas, we can't use it in future
computations. That's a side effect.

The graphics function call also returns something – an integer ID
associated with the drawn shape. We won't use that value in this class.

You can draw a lot more than just rectangles with Tkinter graphics!
Check out the bonus slides on graphics to find more shapes and
keyword arguments.

30

Activity: Try it out!

You do: try running a function call in the graphics starter code to
generate a shape or two. Then try applying the keyword argument
fill to change the shape's color.

31

Learning Objectives

• Use function calls to run pre-built algorithms on specific inputs

• Identify the argument(s) and returned value of a function call

• Use libraries to import functions in categories like math, randomness,
and graphics

Feedback: https://bit.ly/110-s22-feedback

32

https://bit.ly/110-s22-feedback

