Data Representation

15-110 — Monday 01/24

Eberly Center Study

Week 2: online as well

Check1 was due at noon today. If you forgot to turn it in, you can
still submit up until the revision deadline!

* We'll get feedback released on Tuesday

* Understand how different number systems can represent the same
information

* Translate binary numbers to decimal, and vice versa

* Interpret binary numbers as abstracted types, including colors and
text

Number Systems

Computers represent everything
by using Os and 1s. You've likely
seen references to this before.

How can we represent text, or
images, or sound with 0s and 1s?
This brings us back to abstraction.

1
0
1
1
1
0
1
0
0
1
0
0

0

0
1

1
0

0
0

1
1

1
0

0
1

1
1

1
0

1
1

0
1

1
1

0
0

0
1

1
0

0
OO
1
0
0

OHOOHH,OFHFMFEFMFEFOFHFMFEFOF OO, OO
OO OHFHFEFFHFEFOFRL,FPFOFLR OO K
OO FFOFFEFOFFOOFHOOF,OK

0
0
1
0
0
1
0
1
1
0
1
1
1
0
1
0
0
0

Recall our definition of abstraction from the first lecture:

Abstraction is a technique used to make complex systems manageable
by changing the amount of detail used to represent or interact with
the system.

We'll use abstraction to translate Os and 1s to decimal numbers, then
translate those numbers to other types.

A number system is a way of
representing numbers using
symbols.

One example of a number system
is currency. In the US currency
system, how much is each of the
following symbols worth?

Penny
1 cent

Nickel
5 cents

Dime
10 cents

Quarter
25 cents

Number Systems — Dollars

Alternatively, we can represent money using dollars and cents, in
decimal form.

For example, a medium coffee at Tazza is $2.65.

Converting Coins to Dollars

We can convert between number
systems by translating a value
from one system to the other.

For example, the coins on the left
represent the same value as $0.87

Using pictures is clunky. Let's
make a new representation
system for coins.

Coin Number Representation

To represent coins, we'll make a number
with tfour digits.

The first represents quarters, the second
dimes, the third nickels, and the fourth
pennies.

c.3.1.0.2 =

3*$0.25 + 1*S0.10 + 0*S0.05 + 2*$S0.01 =

$0.87

10

In recitation, you created an algorithm to convert money from dollars
to coins, minimizing the number of coins used.

How did your algorithm work?

What is $0.59 in coin representation?

$0.59 = 2*%50.25 + 0*S0.10 + 1*$0.05 + 4*50.01 = c.2.0.1.4

You do: Now try the following calculations:

Whatis c.1.1.1.2 in dollars?

What is $0.61 in coin representation?

When we work with ordinary numbers outside of any specific context, we usually
use the decimal number system.

Moving from the right, the first digit is the number of 1s, the second is 10s, the

third is 100s, etc. Each digit represents a power of 10. For example, 1980 in
decimalis1*1000+9 *100+8 *10+0* 1

But this isn't the only abstract number system we can use!

1Q3

1000

102

100

101

10

100

1

1

9

3

0

We can represent numbers using only Os and 1s with the binary number
system.

Instead of counting the number of 1s, 5s, 10s, and 25s in coins, or 1s, 10s,
100s, and 1000s in abstract amounts, count the number of 1s, 2s, 4s, and 8s.
For example, 1101 in binaryis1*8+1*4+0*2+1*1.

Why these numbers? They're powers of 2. This is a number in base 2, which
only needs the digits O and 1.

22 21 20

8 4 2 1
1 1 0 1

23

When working with binary and computers, we often refer to a set of
binary values used together to represent a number.

A single binary value is called a bit.

A set of 8 bits is called a byte.

We commonly use some number of bytes to represent data values.

128 | 64 | 32 | 16
0 0 0 0
128 | 64 | 32 | 16
0 0 0 0
128 | 64 | 32 | 16
0 0 0 0
128 | 64 | 32 | 16
0 0 0 0

128 | 64 | 32 | 16
0 0 0 0
128 | 64 | 32 | 16
0 0 0 0
128 | 64 | 32 | 16
OO 0 0
128 | 64 | 32 | 16
0 0 0 0

To convert a binary number to decimal, just add each power of 2 that is
represented by a 1.

128| 64 | 32 | 16 | 8 4 2 1

For example, 00011000 =16 + 8 = 24

Another example: 128/ 64 (32|16 | 8 | 4 | 2 | 1

10010001 =128+ 16+ 1 =145 1| o0o|lo|l1]0]0]|o0]|1

Converting decimal to binary uses the same process as converting dollars to
coins.

Look for the largest power of 2 that can fit in the number and subtract it
from the number. Repeat with the next power of 2, etc., until you reach 0.

12864 (32 (16| 8 | 4 | 2 | 1
For example, 36 =32 + 4 =00100100

0 0 1 0 0 1 0 0

Another example:
103=64+32+4+2+1

128| 64 | 32 | 16 | 8 4 2 1

You do: Now try converting numbers on your own.

First: what is 01011011 in decimal?

Second: what is 75 in binary?

Abstracted Types

Now that we can represent numbers using binary, we can represent
everything computers store using binary.

We just need to use abstraction to interpret bits or numbers in
particular ways.

Let's consider dates, images, and text.

It can be helpful to think logically about how to represent a value
before learning how it's done in practice. Let's do that now.

Discuss: We can convert binary directly into numbers, but how do we
represent dates (i.e., 01/24/2022)?

Simple Approach: reserve 4 bits to represent the month, 5 bits to represent the date and 12 bits to
represent the year. Convert the month, day, year normally from decimal to binary.

Actual Approach: count seconds from a certain date (00:00:00 of 01/01/1970) and convert the
number of seconds to binary. Any dates before this date would be negative numbers, and any dates
after would be positive numbers!

We use 32 bits to represent each date; the first bit is used to indicate if the number was positive (0)
or negative (1), and the remaining 31 bits are used to represent the number of seconds elapsed.
Thus, we restrict the number of bits to represent the date to 31 bits.

More on dates: https://busyintelligence.blog/2019/05/22/how-does-a-computer-store-data-dates/

Represent Images as Grids of Colors

What if we want to represent an
image? How can we convert that to
numbers?

First, break the image down into a

grid of colors, where each square of
color has a distinct hue. A square of
color in this context is called a pixel.

If we can represent a pixel in binary,
we can interpret a series of pixels as
an image.

28

Representing Colors in Binary

We need to represent a single color (a pixel) as a
number.

There are a few ways to do this, but we'll focus on
RGB. Any color can be represented as a combination
of Red, Green, and Blue.

Red, green, and blue intensity can be represented

using one byte each, where 00000000 (0) is none and
11111111 (255) is very intense. Each pixel will

therefore require 3 bytes to encode.
Try it out here: w3schools.com/colors/colors rgb.asp

29

http://www.w3schools.com/colors/colors_rgb.asp

Example: Representing Beige

To make the campus-building beige, we'd need:
Red =249=11111001
Green= 228 = 11100100

Blue =183=10110111

Which makes beige!

30

Next, how do we represent text?

First, we break it down into smaller parts, like with images. In this case,
we can break text down into individual characters.

For example, the text "Hello World" becomes
H,e l 1| o0, space, W, o, r,1,d

Unlike colors, characters don't have a natural connection to numbers.

Instead, we can use a lookup table that maps each possible character
to an integer.

As long as every computer uses the same lookup table, computers can
always translate a set of numbers into the same set of characters.

For basic characters, we
can use the encoding
system called ASCII. This
maps the numbers 0 to
255 to characters.
Therefore, one character
is represented by one
byte.

Check it out here:
www.asciitable.com

Dec Hex Oct Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr
00 000 NULL 32 20 040 Space 6440 100 @ @ 96 60 140 `
11 001 Start of Header 3321 041 ! ! 6541 101 A, A 97 61 141 a, a
2 2 002 Start of Text 34 22 042 &+#034; " 66 42 102 B B 98 62 142 b b
33 003 End of Text 35 23 043 #, # 67 43 103 C, C 99 63 143 c c
4 4 004 End of Transmission 36 24 044 $ $ 68 44 104 &+#068;, D 100 64 144 d d
55 005 Enquiry 37 25 045 %, % 69 45 105 E E 101 65 145 e e
6 6 006 Acknowledgment 38 26 046 &, & 70 46 106 &+#070; F 102 66 146 f f
7 7 007 Bell 39 27 047 ' ' 71 47 107 G G 103 67 147 g g
8 8 010 Backspace 40 28 050 ((72 48 110 H H 104 68 150 h h
99 011 Horizontal Tab 41 29 051)) 7349 111 I 1 105 69 151 i i

10 A 012 Line feed 42 2A 052 * * 74 AA 112 &+#074;) 106 6A 152 j |
11 B 013 Vertical Tab 43 2B 053 + + 75 4B 113 K K 107 6B 153 k k
12 C 014 Form feed 44 2C 054 , 76 4C 114 &+#076; L 108 6C 154 l |
13 D 015 Carriage return 45 2D 055 - - 77 4D 115 M, M 109 6D 155 m m
14 E 016 Shift Out 46 2B 056 . . 78 4E 116 N, N 110 6E 156 n n
15 F 017 ShiftIn 47 2F 057 /, / 79 4F 117 O O 111 6F 157 o o
16 10 020 Data Link Escape 48 30 060 0 0 80 50 120 P P 112 70 160 p p
17 11 021 Device Control 1 49 31 061 1 1 8151 121 Q Q 113 71 161 q (¢
18 12 022 Device Control 2 50 32 062 2 2 8252 122 R R 114 72 162 r r
19 13 023 Device Control 3 51 33 063 3 3 83 53 123 S S 11573 163 s s
20 14 024 Device Control 4 52 34 064 4 4 84 54 124 T T 116 74 164 t t
21 15 025 Negative Ack. 53 35 065 5 5 85 55 125 U U 117 75 165 u u
22 16 026 Synchronous idle 54 36 066 6 6 86 56 126 V, V 118 76 166 v, v
23 17 027 End of Trans. Block 55 37 067 7 7 87 57 127 W, W 119 77 167 w, w
24 18 030 Cancel 56 38 070 8 8 88 58 130 X X 120 78 170 x x
25 19 031 End of Medium 57 39 071 9 9 89 59 131 Y Y 12179 171 y vy
26 1A 032 Substitute 58 3A 072 : : 90 5A 132 Z, Z 122 7A 172 z z
27 1B 033 Escape 59 3B 073 ; ; 91 5B 133 [[123 7B 173 { {
28 1C 034 File Separator 60 3C 074 < < 92 5C 134 \ \ 124 7C 174 | |
29 1D 035 Group Separator 61 3D 075 =, = 93 5D 135] 1 125 7D 175 } }
30 1E 036 Record Separator 62 3E 076 >, > 94 5B 136 ^ A 126 7E 176 ~, ~
31 1F 037 Unit Separator 63 3F 077 ? ? 95 5F 137 _ 127 7F 177 Del

asciichars.com

33

http://www.asciitable.com/

Translating Text to Numbers

"Yay" =
01011001 -> 89
01100001 -> 97
01111001 ->121

Dec Hex Oct Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr
00 000 NULL 32 20 040 Space 6440 100 @, @ 96 60 140 `
11 001 Start of Header 3321 041 &4#033; ! 6541 101 A, A 97 61 141 a a
22 002 Start of Text 34 22 042 " " 66 42 102 B B 98 62 142 b b
33 003 End of Text 35 23 043 #, # 67 43 103 C, C 99 63 143 c c
4 4 004 End of Transmission 36 24 044 $ $ 68 44 104 D D 100 64 144 d d
55 005 Enquiry 37 25 045 %, % 69 45 105 E E 101 65 145 e e
6 6 006 Acknowledgment 38 26 046 &, & 70 46 106 F F 102 66 146 f f
77 007 Bell 39 27 047 ' ' 7147 107 G, G 103 67 147 g g
8 8 010 Backspace 40 28 050 ((72 48 110 H H 104 68 150 h h
99 011 Horizontal Tab 41 29 051)) 73 49 111 I 1 105 69 151 i i

10 A 012 Line feed 42 2A 052 * * 74 AA 112 J) 106 6A 152 j |
11 B 013 Vertical Tab 43 2B 053 + + 75 4B 113 K K 107 6B 153 k k
12 C 014 Form feed 44 2C 054 , 76 4C 114 L L 108 6C 154 l |
13 D 015 Carriage return 45 2D 055 - - 77 4D 115 M M 109 6D 155 m m
14 E 016 Shift Out 46 2E 056 . . 78 4E 116 N N 110 6E 156 n n
15 F 017 ShiftIn 47 2F 057 / / 79 4F 117 O O 111 6F 157 o o
16 10 020 Data Link Escape 48 30 060 0, O 80 50 120 P P 112 70 160 p p
17 11 021 Device Control 1 49 31 061 1 1 8151 121 Q, Q 113 71 161 q ¢
18 12 022 Device Control 2 50 32 062 2 2 8252 122 R R 114 72 162 8r r
19 13 023 Device Control 3 51 33 063 3 3 83 53 123 S S 11573 163 s s
20 14 024 Device Control 4 52 34 064 4 4 84 54 124 T T 116 74 164 le; t
21 15 025 Negative Ack. 53 35 065 5 5 8555 125 U U 117 75 165 u u
22 16 026 Synchronous idle 54 36 066 6 6 86 56 126 V, V 118 76 166 v v
23 17 027 End of Trans. Block 55 37 067 7 7 87 57 127 W, W 119 77 167 w w
24 18 030 Cancel 56 38 070 8 8 88 58 130 X X 120 78 170 x x
2519 031 End of Medium 57 39 071 9 9 89 59 131 Y Y 12179 171 y y
26 1A 032 Substitute 58 3A 072 : : 90 5A 132 Z, Z 122 7A 172 z z
27 1B 033 Escape 59 3B 073 ; ; 91 5B 133 [[123 7B 173 { |
28 1C 034 File Separator 60 3C 074 < < 92 5C 134 \ \ 124 7C 174 | |
29 1D 035 Group Separator 61 3D 075 = = 93 5D 135] 1] 125 7D 175 } }
30 1E 036 Record Separator 62 3t 076 > > 94 5E 136 ^, ~ 126 78 176 ~, ~
31 1F 037 Unit Separator 63 3F 077 ? ? 95 5F 137 _ 127 7F 177 Del

asciichars.com
34

There are plenty of characters that aren't available in ASCII (characters from
non-English languages, advanced symbols, emoji...) due to the limited size.

The Unicode system represents every character that can be typed into a
computer. It uses up to 5 bytes, which can represent up to 1 trillion
characters! Find all the Unicode characters here: www.unicode-table.com

The Unicode system is also actively under development. The Unicode

Consortium regularly updates the standard to add new types of characters
and emaoiji.

Discuss: what are the potential repercussions of using a single standard for
all text on computers?

http://www.unicode-table.com/

* Understand how different number systems can represent the same
information

* Translate binary numbers to decimal, and vice versa

* Interpret binary numbers as abstracted types, including colors and text

Feedback form: https://bit.ly/110-s22-feedback

37

https://bit.ly/110-s22-feedback

Bonus Slides

Your computer keeps track of saved data and all the information it
needs to run in its memory, which is represented as binary. You can
think about your computer's memory as a really long list of bits, where

each bit can be set to 0 or 1. But usually we think in terms of bytes,
groups of 8 bits.

Every byte in your computer has an address, which the computer uses
to look up its value.

49 | 53 | 49 | 49 | 48 | /5 | 101 (108 | 198 | 121 | 77 | 97 | 114 | 103 | 97 | 114 | 101 | 116

L 1000 Addresses L 1004 L 1008 L 1012 L 1016

When you open a file on your computer, the application goes to the
appropriate address, reads the associated binary, and interprets the binary
values based on the file encoding it expects. That interpretation depends on
the application you use when opening the file, and the filetype.

You can attempt to open any file using any program, if you convince your
computer to let you try. Some programs may crash, and others will show
nonsense because the binary isn't being interpreted correctly.

Example: try changing a .docx filetype to .txt, then open it in a plain text
editor. .docx files have extra encoding, whereas .txt files use plain ASCII.

In modern computing, we use a lot of bytes to represent information.
Smartphone Memory: 64 gigabytes = 64 billion bytes
Google databases: Over 100 million gigabytes = 100 quadrillion bytes!

CMU Wifi: 15 million bytes per second

