
Data Analysis – Analyzing
and Visualizing

15-110 – Friday 04/15

Announcements

• Check6-1 was due today
• How did it go?

• Quiz 5
• How did it go?
• Grades today/this weekend

2

Last Time

Last week we discussed the data analysis process and went over
several methods for representing and organizing data.

This time, we'll talk more about what we can do with that data once
we've processed it.

3

Learning Goals

• Perform basic analyses on data, including calculating statistics and
probabilities, to answer simple questions

• Choose an appropriate visualization to create based on the number
of dimensions and data types

• Create simple matplotlib visualizations that show the state of a
dataset using APIs and examples

4

Analysis

5

Basic Data Analyses – Statistics Library

There are many basic analyses we can run on features in data to get a sense of what the
data means. You've learned about some of them already in math or statistics classes, such
as mean, median, and mode.

You can implement these in Python yourself, but you don't have to! There's already a
statistics library that does this for you.

import statistics

data = [41, 65, 64, 50, 45, 13, 29, 14, 7, 14]

statistics.mean(data) # 34.2
statistics.median(data) # 35.0
statistics.mode(data) # 14

6

Example: Analyzing Ice Cream Data

We've now cleaned the ice cream dataset from last week and created categories for the
ice-cream. Let's use this as a running example of how to perform analyses.

Here's a bit of code from last time to load and represent the dataset:

import csv
def readData(filename):

f = open(filename, "r")
Semester, 3 orig, 3 cleaned, 3 categories
data = list(csv.reader(f))
return data

7

Example: Statistics of Ice Cream

We can start by measuring the
statistics of the ice cream
dataset.

The data is text, so we must
turn it into numbers before
performing analyses. Try
counting the number of times a
person lists a specific flavor as
their favorite and putting those
counts into a list to analyze.

The count method is handy
here if we narrow down the
data being counted first!

def getFlavorCounts(data, flavor):
counts = []
firstCol = data[0].index("#1 category")
for i in range(1, len(data)): # skip header

line = data[i]
only include categorized flavors
flavorCategory = line[firstCol:firstCol+3]
count = flavorCategory.count(flavor)
counts.append(count)

return counts

import statistics
d = readData("all-icecream.csv")
print(statistics.mean(getFlavorCounts(d, "chocolate")))

8

Calculating Probabilities

You'll also often want to calculate
probabilities based on your data.

In general, the probability that a certain
data type occurs in a dataset is the count of
how often it occurred, divided by the total
number of data points.

Probability:
lst.count(item) / len(lst)

Conditional probability (the probability of
something occurring given another factor)
is slightly more complicated. Create a
modified version of the list that contains
only those elements with that factor; then
you can use the same equation.

newLst = []
for x in lst:

if meetsProperty(x):
newLst.append(x)

newLst.count(item) / len(newLst)
9

Example: Probabilities of Ice Cream

To calculate the probability that an ice
cream flavor is someone's #1 favorite,
just count the number of times that
flavor shows up in the appropriate
column and divide by the total number
of data points.

We can easily modify this to calculate
the probability that you like Flavor Y if
you like Flavor X too!

Probability that a flavor is chosen
def getClassProb(data, flavor):

count = 0
firstCol = data[0].index("#1 category ")
for i in range(1, len(data)):

if data[i][firstCol] == flavor:
count += 1

return count / (len(data) - 1)

d = readData("all-icecream.csv")
print(getClassProb(d, "chocolate"))

10

More Analysis Methods

There's plenty of other data analysis methods we could cover –
bucketing, detecting outliers, dealing with missing data – but what kind
of method you need will depend entirely on the context of the problem
you're solving.

You should generally be able to derive an algorithm that matches the
analysis you want to perform.

11

Visualization

12

Exploration vs. Presentation

Data Visualization is the process of taking a set of data and
representing it in a visual format. Whenever you've made charts or
graphs in past math or science classes, you've visualized data!

Visualization is used for two primary purposes: exploration and
presentation.

13

Data Exploration

In data exploration, charts created
from data can provide information
about that data beyond what is
found in simple analyses alone.

For example, the four graphs to
the right all have the same mean
and the same best-fit linear
regression. But they tell very
different stories.

14

Data Presentation

In data presentation, you've already
found an interesting pattern in the
data and you need to make that
pattern easily visible to other people.

In order to choose the best
visualization for the job, consider the
type of the data you're presenting
(categorical, ordinal, or numerical),
and how many dimensions of data
you need to visualize.

15

https://interactions.acm.org/archive/view/july-august-2018/the-good-the-bad-and-the-biased

One-Dimensional Data

A one-dimensional visualization only visualizes a single feature of the
dataset. For example:

"I want to know how many of each product type are in my data"
"I want to know the proportion of people who have cats in my data"

16

Charts for One-Dimensional Data

To visualize numerical data, use a
histogram.

To visualize ordinal data, use a bar
chart.

To visualize categorical data, use a
pie chart.

17

Two-Dimensional Data

A two-dimensional visualization shows how two features in the dataset
relate to each other. For example:

"I want to know the cost of each product category that we have"
"I want to know the weight of the animals that people own, by pet species"
"I want to know how the size of the product affects the cost of shipping"

18

Charts for Two-Dimensional Data

To analyze numerical x numerical
data, use a scatter plot.

To analyze numerical x
ordinal/categorical data, use a bar
chart for averages or a box-and-
whiskers plot for ranges.

It is difficult to analyze
ordinal/categorical x
ordinal/categorical data visually; use
a table instead.

19

Three-Dimensional Data

A three-dimensional visualization tries to show the relationship between
three different features at the same time. For example:

"I want to know the cost and the development time by product category"
"I want to know the weight of the animals that people own and how much
they cost, by pet species"
"I want to know how the size of the product and the manufacturing location
affects the cost of shipping"

20

Charts for Three-Dimensional Data

To analyze numerical x numerical
x numerical data, use a bubble
plot to compare all three or a
scatter plot matrix to compare all
the pairs.

To analyze numerical x numerical
x ordinal/categorical data, use a
colored scatter plot.

21

Activity: Pick a Visualization

You do: for each of the problem prompts, determine the number of
dimensions, then pick the best visualization to use based on the data
types.

• graph the % of people who have gotten COVID vs. the % of people
who have been vaccinated, separated by state

• graph the distribution of grades (72, 94, etc) in a class

• graph the ages of pets at a shelter compared to the species of pets

22

Coding Visualizations with
Matplotlib

23

Matplotlib Makes Visualizations

The matplotlib library can be used to generate interesting visualizations
in Python.

Matplotlib is external – you need to install it on your machine to run it.
Use the pip command to do this.

pip install matplotlib

24

Draw Visualizations on the Plot

Matplotlib visualizations can be broken down into
several components. We'll mainly care about one:
the plot (called plt). This is like Tkinter's canvas,
except that we'll draw visualizations on it instead
of shapes.

We can construct an (almost) empty plot with the
following code. Note that matplotlib comes with
built-in buttons that let you zoom, move data
around, and save images.

import matplotlib.pyplot as plt

plt.title("Empty")
plt.show()

25

Add Visualizations with Methods

There are lots of built-in methods that
let you construct different types of
visualizations. For example, to make a
scatterplot use
plt.scatter(xValues, yValues).

x = [2, 4, 5, 7, 7, 9]
y = [3, 5, 4, 6, 9, 7]
plt.scatter(x, y)
plt.show()

26

Visualization Methods have Keyword Args

You can customize how a visualization looks by
adding keyword arguments. We used these in
Tkinter to optionally change a shape's color or
outline; in Matplotlib we can use them to add
labels, error bars, and more.

For example, we might want to create a bar chart
(with plt.bar) with a unique color for each bar.
Use the keyword argument color to set the
colors.

labels = ["A", "B", "C", "D", "E"]
yValues = [10, 40, 36, 46, 21]
colors = ["red", "yellow", "green",

"blue", "purple"]
plt.bar(labels, yValues, color=colors)
plt.show()

27

Don't Memorize – Use the Website!

There are a ton of visualizations you can draw in Matplotlib, and
hundreds of ways to customize them. It isn't productive to try to
memorize all of them.

Instead, use the documentation! Matplotlib's website is very well
organized and has tons of great examples: https://matplotlib.org/

When you want to create a visualization, start by searching the API and
the pre-built examples to find which methods might do what you
need.

28

https://matplotlib.org/

API Example

For example – how can we add x-axis
and y-axis labels to the bar chart?

Go to the plot API:
https://matplotlib.org/stable/api/_as_ge
n/matplotlib.pyplot.html

Search 'label' and you'll soon find the
functions xlabel and ylabel. You can
click on the function to find more
information. The page describes what
the function does, what the required
arguments are, and what it returns.

Note that the keyword arguments will
be listed with default values. That's how
we know they're optional.

29

If nothing obvious shows up, you can do a broader
internet search of 'matplotlib x-axis label', which
will often point you to the right place.

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.xlabel.html

Adding xlabel and ylabel

labels = ["A", "B", "C", "D", "E"]
yValues = [10, 40, 36, 46, 21]

colors = ["red", "yellow", "green",
"blue", "purple"]

plt.bar(labels, yValues, color=colors)

plt.xlabel("Product Categories")
plt.ylabel("# Purchased")

plt.show()

30

'Example' Example

Alternatively, you can browse the
Matplotlib examples page to find
visualizations and features that might prove
useful:
https://matplotlib.org/stable/gallery/index.html

Perhaps we're interested in using grouped
bar charts to show the breakdown between
products purchased in different countries.
The example code provides a starting place
for which functions to use.

Try copying the example code into your
editor and running it. Then try changing
some things to see how the results are
affected.

31

https://matplotlib.org/stable/gallery/index.html
https://matplotlib.org/stable/gallery/lines_bars_and_markers/barchart.html

Sidebar: Plot vs Axis

You might have noticed that the grouped bar chart example looks slightly different than the
code we've written so far. It sets

fig, ax = plt.subplots()

and calls methods on ax for the rest of the code.

This is an alternate way to write code in Matplotlib. Instead of drawing on the plot, break
the plot into one of more axes with plt.subplots, then draw directly on the axis.

This is mainly useful if you want to draw more than one visualization in a single window.
For the visualizations we'll do in this class, plt will work fine.

32

https://matplotlib.org/stable/api/axis_api.html?highlight=axis

Going from Example to Our Own Code

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

labels = ['G1', 'G2', 'G3', 'G4', 'G5']
men_means = [20, 34, 30, 35, 27]
women_means = [25, 32, 34, 20, 25]

x = np.arange(len(labels)) # the label locations
width = 0.35 # the width of the bars

fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, men_means,

width, label='Men')
rects2 = ax.bar(x + width/2, women_means,

width, label='Women')

...

labels = ["A", "B", "C", "D", "E"]
yValuesA = [10, 40, 36, 46, 21]
yValuesB = [20, 45, 35, 62, 32]

xValuesA = []
xValuesB = []
w = 0.35
for i in range(len(labels)):

xValuesA.append(i - w / 2)
xValuesB.append(i + w / 2)

plt.bar(xValuesA, yValuesA, width=w)
plt.bar(xValuesB, yValuesB, width=w)

plt.xlabel("Product Categories")
plt.ylabel("# Purchased")

plt.show()

33

Example: Visualizing Ice Cream

Let's use Matplotlib to visualize how popular the ice cream flavors
were. We're visualizing counts of categorical data, so we can use a pie
chart.

Start by looking up how to make a pie chart in the plot API:
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pie.html#
matplotlib.pyplot.pie

34

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pie.html

Example: Reformat the Data
A pie chart requires a list x that holds the size of each portion. We can optionally provide a list labels with the
labels.

Let's find all the flavors in the dataset and get the counts of each one using getFlavorCounts from before.

data = readData("all-icecream.csv")
firstCol = data[0].index("#1 category")
flavors = []
portions = []
for i in range(1, len(data)):

flavor = data[i][firstCol]
if flavor not in flavors: # haven't counted yet

flavors.append(flavor)
counts = getFlavorCounts(data, flavor)
portions.append(sum(counts))

35

Example: Create the Pie Chart
Now we can combine it all together into one pie chart!

import matplotlib.pyplot as plt

data = readData("all-icecream.csv")
firstCol = data[0].index("#1 category")
flavors = []
portions = []
for i in range(1, len(data)):

flavor = data[i][firstCol]
if flavor not in flavors:

flavors.append(flavor)
counts = getFlavorCounts(data, flavor)
portions.append(sum(counts))

plt.pie(portions, labels=flavors)
plt.show()

36

Learning Goals

• Perform basic analyses on data, including calculating statistics and
probabilities, to answer simple questions

• Choose an appropriate visualization to create based on the number of
dimensions and data types

• Create simple matplotlib visualizations that show the state of a dataset
using APIs and examples

Feedback: https://bit.ly/110-s22-feedback

37

https://bit.ly/110-f21-feedback
https://bit.ly/110-s22-feedback

