
Managing Large Code Projects
15-110 – Friday 04/01

Announcements

• HW5 is due Monday

• Quiz grades will be available this week

2

Learning Goals

• Read and write data from files

• Implement and use helper functions in code to break up large
problems into solvable subtasks

3

Reading Data from Files

4

Reading Data From Files

As we start building more complex programs, we'll often need to refer to
data stored elsewhere on the computer. That means we need to read data
from a file.

Recall that all the files on your computer are organized in directories, or
folders. The file structure in your computer is a tree – directories are the
inner nodes (recursively nested) and files are the leaves.

When you're working with files, always make sure you know which sequence
of folders your file is located in. A sequence of folders from the top-level of
the computer to a specific file is called a filepath.

5

Opening Files in Python

To interact with a file in Python we'll need to access its contents. We
can do this by using the built-in function open(filepath). This will
create a File object which we can read from or write to.

f = open("sample.txt")

open() can either take a full filepath or a relative path (relative from
the location of the python file). It's usually easiest to put the file you
want to read/write in the same directory as the python file so you can
simply refer to the filename directly.

6

Reading and Writing from Files

When we open a file we need to specify whether we plan to read from or write to the file. This will
change the mode we use to open the file.

filename = "sample.txt"
f = open(filename, "r") # read mode
lines = f.readlines() # reads the lines of a file as a list of strings
or
text = f.read() # reads the whole file as a single string

f = open("sample2.txt", "w") # write mode
f.write(text) # writes a string to the file

Only one instance of a file can be kept open at a time, so you should always close a file once you're
done with it.

f.close()
7

Be Careful When Programming With Files!

WARNING: when you write to files in Python backups are not
preserved. If you overwrite a file, the previous contents are gone
forever. Be careful when writing to files.

WARNING: if you have multiple Python files open in Pyzo and you try
to open a file from a relative path, Pyzo might get confused. To be safe,
when working with files, only have one file open in Pyzo at a time. And
make sure to 'Run File as Script' when working with files.

8

Activity: Read a File

You do: Download the file
chat.txt from the schedule page
and move it to the same folder as a
python script. Try using open and
read to open the file and read the
contents, then print the contents.

If Python says a filename doesn't
exist when you're sure that it does,
raise your hand to get help; there's a
few common problems that can
occur.

Common file reading issues:
• make sure the file is actually in the

same directory as your python
script
• make sure the filename you've

entered is actually the filename
(including the filetype at the end!)
• make sure you're using Run File as

Script (execute usually won't work)
• make sure only one file is open in

Pyzo

9

Helper Functions

16

Helper Functions

In Hw5 and Hw6 (and in projects you might work on outside of 15-110), the
code you write will be bigger than a single function. You'll often need to
write many functions that work together to solve a larger problem.

We call a function that solves part of a larger problem this way a helper
function. By breaking up a large problem into multiple smaller problems and
solving those problems with helper functions, we can make complicated
tasks more approachable.

We briefly talked about how to call functions from other functions when we
first learned about function definitions and calls. Let's revisit the idea now.

17

Designing Helper Functions

In Hw5 and Hw6 we've broken a problem down into helper functions
for you. But if you work on a separate project, you'll need to do this
process on your own.

Try to identify subtasks that are repeated or are separate from the
main goal; break down the problem into smaller parts. Have one
subtask per function to keep things simple.

18

Example: Tic-Tac-Toe

Consider the game tic-tac-toe. It seems simple, but it involves multiple
parts to play through a whole game.

Discuss: what are the subtasks of tic-tac-toe?

19

Breaking down Tic-Tac-Toe

Let's organize our tic-tac-toe game based on four core subtasks:

makeNewBoard(), which constructs and returns the starter board

showBoard(board), which displays a given board

takeTurn(board, player), which lets the given player make a move on the board

isGameOver(board), which returns True or False based on whether or not the game
is over

We'll only go over how each function works briefly. The most important thing right now is
how we use the helper functions in the main code.

20

makeNewBoard and showBoard

makeNewBoard and showBoard are
simple; we can program these just using
concepts we've already learned.

The board will be a 3x3 2D list with "."
for empty spaces, "X" for player X, and
"O" for player O.

We'll call these functions in a main
function that will actually run the game.

Construct the tic-tac-toe board
def makeNewBoard():

board = []
for row in range(3):

Add a new row to board
board.append([".", ".", "."])

return board

Print the board as a 3x3 grid
def showBoard(board):

for row in range(3):
line = ""
for col in range(3):

line += board[row][col]
print(line)

21

takeTurn

takeTurn has the user input
the row and col they want to
fill in. Check to make sure the
row and col are numbers with
isdigit and ensure that
they select a valid and unfilled
space with if statements.

Keep looping until a valid
location is chosen. Update the
board at that spot, then
return the updated board.

Ask the user to input where they want
to go next with row,col position
def takeTurn(board, player):
while True:
row = input("Enter a row for " + player + ":")
col = input("Enter a col for " + player + ":")
Make sure it's a number!
if row.isdigit() and col.isdigit():

row = int(row)
col = int(col)
Make sure its in the grid!
if 0 <= row < 3 and 0 <= col < 3:
if board[row][col] == ".":
board[row][col] = player
stop looping when move is made
break

else:
print("That space isn't open!")

else:
print("Not a valid space!")

else:
print("That's not a number!")

return board 22

isGameOver needs more helper functions

isGameOver is a bit more complicated.
There are multiple scenarios where the
game can end- if a player gets three in a
row horizontally, or vertically, or
diagonally. The game can also end if the
board is filled.

Use more helper functions to break up
the work into parts! Generate strings
holding all rows/columns/diagonals
with horizLines, vertLines, and
diagLines.

Generate all horizontal lines
def horizLines(board):
lines = []
for row in range(3):
lines.append(board[row][0] + board[row][1] + \

board[row][2])
return lines

Generate all vertical lines
def vertLines(board):
lines = []
for col in range(3):
lines.append(board[0][col] + board[1][col] + \

board[2][col])
return lines

Generate both diagonal lines
def diagLines(board):
leftDown = board[0][0] + board[1][1] + \

board[2][2]
rightDown = board[0][2] + board[1][1] + \

board[2][0]
return [leftDown, rightDown]

23

isGameOver and isFull

We can also make a separate function to
check whether the board is full.

Now all we need to do in isGameOver is
call our functions. First, check whether
the board is full. If it isn't, generate all
the lines and check whether any hold
"XXX" or "OOO". Much easier!

Note that when we call the helper
functions, we have to pass in the needed
data as arguments to the call. For now,
that's just the board.

Check if the board has no empty spots
def isFull(board):

for row in range(3):
for col in range(3):

if board[row][col] == ".":
return False

return True

True if game is over, False is not
def isGameOver(board):

if isFull(board):
return True

allLines = horizLines(board) + \
vertLines(board) + \
diagLines(board)

for line in allLines:
if line == "XXX" or line == "OOO":

return True
return False

24

Put it All Together

Now we can finally write the main function!

Start by calling makeNewBoard to generate the
board. Display the starting state by calling
showBoard.

Use a loop to iterate over every turn in the
game. Alternate a Boolean variable to decide
whether it's X's or O's turn, and call takeTurn
on the board and the appropriate player to
decide which move to make. Call showBoard
again each time to show the updated board.

Keep looping until the game is over by checking
isGameOver in the loop condition.

def playGame():
print("Let's play tic-tac-toe!")
board = makeNewBoard()
showBoard(board)
player1Turn = True
while not isGameOver(board):

if player1Turn:
board = takeTurn(board, "X")

else:
board = takeTurn(board, "O")

showBoard(board)
player1Turn = not player1Turn

print("Goodbye!")

25

Learning Goals

• Read and write data from files

• Implement and use helper functions in code to break up large
problems into solvable subtasks

Feedback: https://bit.ly/110-s22-feedback

26

https://bit.ly/110-s22-feedback

