Runtime and Big O

1. Put the following runtimes in increasing order - O(n), O(log(n)), O(n!), O(n*2), O(nlog(n)),
O(2"n)

2. What are the big-O complexities of the following functions?

a. def howManyNumbers(s):
numbers = "1234567890"
count=0
for charin s:

for num in numbers:
if (char == num):
count = count + 1
return count

b. def containsVowel(s):
forcins:
If cin[“a”, “e”, “", “0”, “u”]:
return true
return false

c. deff(L): #L is a list with length n
lenList = len(L)
count=0
for i in range(lenList):
for j in range(lenList):
count += LJi]
return count

d. def g(s): #s is a string of length n
result=0
for char in string.ascii_lowercase:
if charin s:
s = s[1:]
result += 1
return result

e. def h(L): #L is a list with length n
i=1



listLength = len(L)
result =[]
while i < listLength:
result += L[i]
i*=3
return i

3. Given the following function containsVowels that checks if a string contains any vowels, what
are the best and worse case runtimes? What are the runtimes of each?

def containsVowel(s):
forcins:
If cin[“a”, “e”, “", “0”, “u”]:
return true
return false



