
Runtime and Big O

1. Put the following runtimes in increasing order - O(n), O(log(n)), O(n!), O(n^2), O(nlog(n)),
O(2^n)

2. What are the big-O complexities of the following functions?

a. def howManyNumbers(s):

 numbers = "1234567890"
 count = 0
 for char in s:
 for num in numbers:
 if (char == num):
 count = count + 1
 return count

b. def containsVowel(s):

 for c in s:
If c in [“a”, “e”, “i”, “o”, “u”]:
 return true

 return false

c. def f(L):​ # L is a list with length n
 lenList = len(L)
 count = 0
 for i in range(lenList):
 for j in range(lenList):
 count += L[i]
 return count

d. def g(s):​ #s is a string of length n

 result = 0
 for char in string.ascii_lowercase:
 if char in s:
 s = s[1:]
 result += 1
 return result

e. def h(L):​ #L is a list with length n
i = 1

listLength = len(L)
result = []
while i < listLength:

 result += L[i]
 i *= 3
 return i

3. Given the following function containsVowels that checks if a string contains any vowels, what
are the best and worse case runtimes? What are the runtimes of each?

def containsVowel(s):
 for c in s:

If c in [“a”, “e”, “i”, “o”, “u”]:
 return true

 return false

