
● Identify the worst case and best case inputs of functions
● Compare the function families that characterize different functions
● Calculate a specific function or algorithm's efficiency using Big-O notation

● Identify core parts of trees, including nodes, children, the root, and leaves
● Use binary trees implemented with dictionaries when reading and writing code

● Identify core parts of graphs, including nodes, edges, neighbors, weights, and
directions.

● Use graphs implemented as dictionaries when reading and writing simple
algorithms in code

● Identify whether a tree is a binary search tree
● Search for values in BSTs using binary search
● Analyze the efficiency of binary search on a balanced vs. unbalanced BST
● Search for paths in graphs using breadth-first search and depth-first search
● Analyze the efficiency of BFS and DFS on a graph

● Identify brute force approaches to common problems that run in O(n!) or O(2n),
including solutions to Travelling Salesperson, puzzle-solving, subset sum,
and exam scheduling

● Identify whether a function family is tractable or intractable
● Define the complexity classes P and NP and explain why they are important
● Identify whether a known algorithm runs in P and/or NP based on its runtime
● Use heuristics to find good-enough solutions to NP problems in polynomial time


