Identify the worst case and best case inputs of functions
Compare the function families that characterize different functions
Calculate a specific function or algorithm's efficiency using Big-O notation

Identify core parts of trees, including nodes, children, the root, and leaves
Use binary trees implemented with dictionaries when reading and writing code

Identify core parts of graphs, including nodes, edges, neighbors, weights, and
directions.

Use graphs implemented as dictionaries when reading and writing simple
algorithms in code

|dentify whether a tree is a binary search tree

Search for values in BSTs using binary search

Analyze the efficiency of binary search on a balanced vs. unbalanced BST
Search for paths in graphs using breadth-first search and depth-first search
Analyze the efficiency of BFS and DFS on a graph

|dentify brute force approaches to common problems that run in O(n!) or O(2n),
including solutions to Travelling Salesperson, puzzle-solving, subset sum,
and exam scheduling

Identify whether a function family is tractable or intractable

Define the complexity classes P and NP and explain why they are important
Identify whether a known algorithm runs in P and/or NP based on its runtime

Use heuristics to find good-enough solutions to NP problems in polynomial time



