
15-110 Quiz4 Notes Sheet

Runtime and Big-O Notation

Best case: an input that leads to an
algorithm taking the least steps possible
Worst case: an input that leads to an
algorithm taking the most steps possible

Function family: a set of functions that all
grow at a similar rate (eg, linear functions)
expressed in a simplified format.
Common function families: constant,
logarithmic, linear, quadratic, exponential

Big-O: a representation of the function
family of the worst-case scenario for a
specific algorithm. Represented as
O(runtime).
Common Big-O runtimes: O(1), O(log n),
O(n), O(n2), O(2n)

Linear Search: O(n)
Binary Search: O(log n)
Hashed Search: O(1)

Trees

Tree: a data structure composed of nodes
holding values that are connected
hierarchically in a recursive manner.
Binary Tree: a tree where each node has
at most two children, called left and right

Parent: the node connected directly above
the current node
Children: the nodes connected directly
below the current node
Root: the topmost node of a tree (with no
parent)
Leaf: a node with no children

Our tree format is a recursively nested
dictionary:
{ "contents" : nodeValue,

"left"     : leftChildSubtree,

"right"    : rightChildSubtree }

If there is no left/right child, the key maps
to None instead.

The common algorithm structure for trees
is recursive:
Base case: when the tree is a leaf, or an
empty tree
Recursive Case: recursively call the
function on the left child and right child (if
they exist) and combine the results with
the current node

Graphs

Graph: a data structure composed of
nodes holding values connected by edges
Neighbors: a pair of nodes connected by
an edge.
Directed: a graph where edges can go
from one node to another and not vice
versa. Opposite is undirected.
Weighted: a graph where edges have
values (called weights). Opposite is
unweighted.

Our graph format is a dictionary mapping
nodes to lists of neighbors:
{ nodeValue : [ neighborValue ],

... }

If the graph is weighted, neighbors are
represented as value-weight pairs:
{ node : [ [neighborValue, weight] ],

... }



15-110 Quiz4 Notes Sheet

Search Algorithms II

Binary search tree (BST): a tree for which
the left child of every node (and all its
children, etc) are strictly less than the
node, and the right child of every node
(and its children, etc) are strictly greater
than the node.
Binary search: an algorithm that can be
performed on a BST by making just one
recursive call - to the left if the target is
smaller than the root, to the right if larger.
Binary search runtime: binary search on a
BST runs in O(log n) if the tree is
balanced (all left and right subtree pairs
are ~ the same size), O(n) if unbalanced.

Breadth-First Search (BFS): an algorithm
where you search for a path from a start
node to a target by visiting the immediate
neighbors, then their immediate
neighbors, etc, until the target is found or
no neighbors remain.
Depth-First Search (DFS): an algorithm
where you search for a path from a start
node to a target by visiting a string of
neighbors until you reach a dead end,
then backtrack to the most recent
unvisited neighbor; repeat until target is
found or all neighbors have been visited
BFS and DFS runtimes: the runtimes
depend on the number of edges in the
graph. If we assume each node has
constant # edges, both run in O(n).

Tractability

Brute force approach: an algorithmic
strategy - solve a problem by generating
all possible solutions and checking them.

Travelling Salesperson: a problem where
you find the shortest route across all
nodes in a graph. Runs in O(n!).
Puzzle Solving: a problem where you
solve a jigsaw puzzle by finding an
arrangement of pieces that fits all
constraints. Runs in O(n!).
Subset Sum: a problem where you find a
subset of numbers in a list that sums to a
target number. Runs in O(2n).
Boolean Satisfiability: a problem where
you find a combination of inputs that
makes a circuit output 1. Runs in O(2n).
Exam Scheduling: a problem where you
find an arrangement of exams across k
timeslots such that no student has a
conflict. Runs in O(kn).

Tractable: a problem is tractable if its
worst-case runtime can be represented as
a polynomial equation. Opposite is
intractable.

Complexity class: a collection of function
families that have similar efficiency for
certain tasks and are bounded by (no
worse than) a certain runtime.

P: a complexity class of problems that are
tractable to solve
NP: a complexity class of problems that
are tractable to verify
P vs NP: a big unsolved problem in CS.
Are the complexity classes P and NP the
same? We don't know!

Heuristic: a search technique used to find
good-enough solutions to problems.
Generates scores to choose next steps
instead of using brute force.


