
15-110 Quiz2 Notes Sheet

Booleans, Conditionals, & Errors

Logical operators: and, or, not

New math operators: % (mod), // (div)

Short circuit evaluation: Python only
evaluates the second half of a logical
operation if it needs to

Conditional statement: control structure
that allows you to make choices in a
program.

if booleanExpr:

ifBody

elif booleanExpr:

elifBody

else:

elseBody

Syntax Error: an error that occurs when
Python cannot tokenize or structure
code. Examples: SyntaxError,
IndentationError, Incomplete Error

Runtime Error: an error that occurs
when Python encounters a problem
while running code. Examples:
NameError, TypeError,
ZeroDivisionError

Logical Error: an error that occurs when
code runs properly but does not produce
the intended result. Often (but not
always) caused by a failed test case
with AssertionError

assert(funName(input) == output)

Circuits and Gates

Circuit: a hardware component that
manipulates bits to compute an
algorithmic result. Can also be
simulated with an abstract version.

Gate: an abstract component of a
circuit. Takes some number of bits as
input and outputs a bit.

Gates:∧ (and),∨ (or), ¬ (not), ⊕ (xor);
also nand and nor (no special symbols)

Gates (in circuits):

and: or:

not: xor:

nand: nor:

Truth table: a table that lists all possible
input bit combinations and the resulting
output for a particular gate or circuit

Half-adder: a circuit that takes two
one-digit binary numbers, adds them,
and outputs two digits as the result

Full adder: a circuit that takes two
one-digit binary numbers and a
carried-in digit, adds all three, and
outputs two digits as the result

N-bit adder: a circuit that takes two n-bit
numbers, adds them together by
chaining together n full adders, and
outputs a n+1-digit result

15-110 Quiz2 Notes Sheet

While Loops

While loop: a control structure that lets
you repeat actions while a given
Boolean expression is True

while booleanExpr:

whileBody

Infinite loop: a while loop that never
exits due to the state of the program

Loop control variable: a variable used to
manipulate the number of times a loop
iterates. Requires a start value, update
action, and continuing condition.

input(msg) - prints msg, lets the user
type a response, then returns the
response as a string

For Loops

For loop: a control structure that lets you
repeat actions a specific number of
times

for var in range(rangeArgs):

forBody

Range: a function that generates values
for the loop control variable in a for loop.
Can take 1-3 inputs.

range(end) # [0, end)

range(start, end) # [start, end)

range(start, end, step)

step provides the increment

Looping over Strings

Index: access a specific value in a
sequence based on its position.
Positions start at 0 and end at
len(seq)-1. Non-existent indexes
result in IndexError.

strExpr[index]

Slice: access a subsequence of a larger
sequence based on a given start, end
(not inclusive), and step

strExpr[start:end:step] # slice

strExpr[start:end] # also slice

default to 0:len(strExpr):1

Looping over strings: use range and
indexing to access one character at a
time.

for i in range(len(strExpr)):

something with strExpr[i]

General Control Structures

Control flow chart: chart that designates
how a program steps through
commands. Uses branches for
conditional checks and arrows leading
back to previous commands for loops.

Nesting: a control structure can be
included in the body of another control
structure through use of indentation.

Nested loop: a loop with another loop in
its body. The inner loop is fully executed
for each iteration of the outer loop.

