Unit 1 - Programming Skills and Computer Organization

Unit 2 - Data Structures and Efficiency

Unit 3 - Scaling Up Computing

Unit 4 - CS as a Tool

Unit 5 - CS in the World

Unit 1 - Programming Skills and Computer Organization

Define the essential components of computer science, algorithms and
abstraction
Construct plain-language algorithms to solve basic tasks

Recognize and use the basic data types in programs
Interpret and react to basic error messages caused by programs
Use variables in code and trace the different values they hold

Understand how different number systems can represent the same information
Translate binary numbers to decimal, and vice versa
Interpret binary numbers as abstracted types, including colors and text

Use function calls to run pre-built algorithms on specific inputs

Identify the argument(s) and returned value of a function call

Use libraries to import functions in categories like math, randomness, and
graphics

Use function definitions when reading and writing algorithms to implement
procedures that can be repeated on different inputs

Recognize the difference between local and global scope

Trace the call stack to understand how Python keeps track of nested function
calls

Use logical operators on Booleans to compute whether an expression is True or
False

Use conditionals when reading and writing algorithms that make choices based
on data

Recognize the different types of errors that can be raised when you run Python
code



Translate Boolean expressions to truth tables and circuits

Translate circuits to truth tables and Boolean expressions

Recognize how addition is done at the circuit level using algorithms and
abstraction

Use while loops when reading and writing algorithms to repeat actions while a
certain condition is met

Identify start values, continuing conditions, and update actions for loop
control variables

Use for loops when reading and writing algorithms to repeat actions a specified
number of times
Recognize which numbers will be produced by a range expression

Index and slice into strings to break them up into parts
Use for loops to loop over strings by index

Translate algorithms from control flow charts to Python code
Use nesting of statements to create complex control flow



Unit 2 - Data Structures and Efficiency

Read and write code using 1D and 2D lists
Use string/list methods to call functions directly on values

Recognize whether two values have the same reference in memory
Recognize the difference between destructive vs. non-destructive
functions/operations on mutable data types

e Use aliasing to write functions that destructively change lists

Define and recognize base cases and recursive cases in recursive code
Read and write basic recursive code

Trace over recursive functions that use multiple recursive calls with Towers of
Hanoi

Recognize linear search on lists and in recursive contexts
Use binary search when reading and writing code to search for items in sorted
lists

Identify the keys and values in a dictionary
Use dictionaries when writing and reading code that uses pairs of data
Use for loops to iterate over the parts of an iterable value

e Recognize the requirements for building a good hash function and a good
hashtable that lead to constant-time search

Identify the worst case and best case inputs of functions
Compare the function families that characterize different functions
Calculate a specific function or algorithm's efficiency using Big-O notation

Identify core parts of trees, including nodes, children, the root, and leaves
Use binary trees implemented with dictionaries when reading and writing code

e Identify core parts of graphs, including nodes, edges, neighbors, weights, and
directions.

e Use graphs implemented as dictionaries when reading and writing simple
algorithms in code



Identify whether a tree is a binary search tree

Search for values in BSTs using binary search

Analyze the efficiency of binary search on a balanced vs. unbalanced BST
Search for paths in graphs using breadth-first search and depth-first search
Analyze the efficiency of BFS and DFS on a graph

Identify brute force approaches to common problems that run in O(n!) or O(2n),
including solutions to Travelling Salesperson, puzzle-solving, subset sum,
and exam scheduling

Identify whether a function family is tractable or intractable

Define the complexity classes P and NP and explain why they are important
|dentify whether a known algorithm runs in P and/or NP based on its runtime

Use heuristics to find good-enough solutions to NP problems in polynomial time



Unit 3 - Scaling Up Computing

Define and understand the differences between the following types of
concurrency: circuit-level concurrency, multitasking, multiprocessing, and
distributed computing

Create concurrency trees to increase the efficiency of complex operations by
executing sub-operations at the same time

Recognize certain problems that arise while multiprocessing, such as difficulty
of design and deadlock

Create pipelines to increase the efficiency of repeated operations by executing
sub-steps at the same time

Use the MapReduce pattern to design parallelized algorithms for distributed
computing

Recognize core terms related to the internet, including: browsers, routers, ISPs,
IP addresses, DNS servers, protocols, packets, and cloud

Understand at a high level the internet communication process that happens
when you click on a link to a website in your browser.

Understand at a high level that the internet is fault tolerant due to being
distributed

Define the following terms: data privacy, data security, authentication, and
encryption

Recognize the traits of the internet that make it more prone to security attacks
and recognize common security attacks (DDOS and man-in-the-middle).
Trace common encryption algorithms, such as the Caesar Cipher and RSA,
and recognize whether they are symmetric or asymmetric

Evaluate the efficiency of breaking encryption algorithms based on keyspace.

Read and write data from files
Implement and use helper functions in code to break up large problems into
solvable subtasks

Install external modules with the pip command
Read documentation to learn how to use a new module

Unit 4 - CS as a Tool

Identify whether features in a dataset are categorical, ordinal, or numerical
Interpret data according to different protocols: CSV and JSON



Use string operations and methods to extract data from plaintext
Reformat data to find, add, remove, or reinterpret pre-existing data

e Represent the state of a system in a model by identifying components and
rules
Visualize a model using graphics
Update a model over time based on rules

e Identify the three major categories of learning (supervised, unsupervised, and
reinforcement) and the three major categories of reasoning (classification,
regression, and clustering)

e Decide which combination of learning and reasoning categories are best used
to solve a stated problem

e Describe how training, validation, and testing are used to build a model and
measure its performance

e Perform basic analyses on data, including calculating statistics and
probabilities, to answer simple questions

e Choose an appropriate visualization to create based on the number of
dimensions and data types

e Create simple matplotlib visualizations that show the state of a dataset using
APIls and examples

e Update a model after events (mouse-based and keyboard-based) based on
rules
e Use Monte Carlo methods to estimate the answer to a question

e Recognize how Als attempt to achieve goals by using a perception, reason,
and action cycle
Build game decision trees to represent the possible moves of a game
Use the minimax algorithm to determine an Al's best next move in a game
Design potential heuristics that can support 'good-enough' search for an Al

Unit 5 - CS in the World

e Big Ideas of: Introduction of the theoretical concept of a computer
e Big Ideas of: Construction of the first computer hardware and software
e Big Ideas of: Transition of computers from government/corporate to personal



Big Ideas of: Connection of computers via the internet

Understand the current extent of data collection on the internet and how data is
used

Recognize the uses and drawbacks of facial recognition algorithms in different
contexts

Identify the societal impact when automated decision making replaces human
decision making due to the explainability problem and job displacement

Recognize and describe the key impacts of future computing ideas, including:
cryptocurrencies, NFTs, virtual reality, quantum computing, and the
singularity.



