
15-110 Hw5 - Written Portion

Name:

AndrewID:

Complete the following problems in the fillable PDF, or print out the PDF, write your
answers by hand, and scan the results.

When you are finished, upload your hw5.pdf to Hw5 - Written on Gradescope, and
upload your hw5.py file to Hw5 - Programming on Gradescope. Make sure to check
the autograder feedback after you submit!

Written Problems
#1 - Parallelization Problems - 5pts
#2 - MapReduce - 10pts
#3 - Internet Communication Process - 5pts
#4 - Internet Fault Tolerance - 12pts
#5 - Security Definitions - 10pts
#6 - Security Attacks - 8pts
#7 - Cracking Codes - 10pts

Programming Problems
#1 - generateBoard(words) - 3pts
#2 - displayBoard(board) - 4pts
#3 - getFlippedCards(board) - 3pts
#4 - loadWords(filename) - 10pts
#5 - pickIndex(board) - 10pts
#6 - playMemoryGame(filename) - 10pts

Written Problems

#1 - Parallelization Problems - 5pts
Can attempt after Parallel Programming lecture

The following scenarios all depict potential problems while parallelizing. Which of these
scenarios is the best depiction of deadlock? Select one answer.

☐ Two students are both trying to edit a google doc at the same time, and their text
keeps getting mixed up and overlapped.

☐ Two students both want to paint the fence at the same time, but one has the
paintbrush and the other has the paint bucket, so no painting gets done.

☐ Two students are tallying votes in an organization, but they keep erasing and
writing over each other's results, so some votes are lost.

☐ Two students are trying to split the work of a group assignment, but can't figure
out how to split up the problems so that they can be done at the same time.

#2 - MapReduce - 10pts
Can attempt after Parallel Programming lecture

Suppose we implement a MapReduce task to compute how many words in a collection
of files have the string "the" in them (e.g., "them" and "whether"). Describe at a high
level what values this specific mapper function would input and output, what values this
reducer would input and output, and what actions the manager function would take.

Mapper Input Value(s)

Mapper Output Value(s)

Reducer Input Value(s)

Reducer Output Value(s)

Manager Actions

#3 - Internet Communication Process - 5pts
Can attempt after How the Internet Works lecture

How is a website sent across the internet to your web browser? Select one answer.
☐ The server creates a packet of the whole website and sends it as fast as possible

to your browser
☐ The server zips up the website to make it as small as possible so none of the

data gets lost
☐ The server splits the website into packets and makes sure they all get there in

the right order
☐ The server creates packets and sends them all to your browser, which puts them

together in the right order

#4 - Internet Fault Tolerance - 12pts
Can attempt after How the Internet Works lecture

Which of the following scenarios could lead to you being unable to visit www.cmu.edu?
Select all answers that apply.

☐ Your computer goes down
☐ Your ISP goes down
☐ A router goes down
☐ A DNS server goes down
☐ A CMU server goes down
☐ All of the CMU servers go down

#5 - Security Definitions - 10pts
Can attempt after Authentication and Encryption lecture

Very briefly, and in your own words, what is the difference between authentication and
encryption?

http://www.cmu.edu

#6 - Security Attacks - 8pts
Can attempt after Authentication and Encryption lecture

For the two following questions, select all answers that apply.

In a Distributed Denial of Service (DDOS) attack, the attacker might do the following to
overload the server and make the server stop replying to data requests:

☐ Send a small message disguised to look like it's from another person
☐ Send many many different small messages
☐ Send a request for data that doesn't exist on the server
☐ Send a request for a lot of data that will require lots of packets in a response

In a Man in the Middle attack, the attacker:

☐ Listens on computer networks for unencrypted usernames and passwords or
other data

☐ Writes a virus that listens to data passed within your computer between your
operating system and regular programs

☐ Uses social engineering to trick people into sharing their usernames and
passwords

☐ Puts ads into websites that track everything you do on the website

#7 - Cracking Codes - 10pts
Can attempt after Authentication and Encryption lecture

We want to modify the Caesar Cipher algorithm to make it harder to crack. To do this,
we double the number of letters that can be substituted in the algorithm by
distinguishing between lowercase and uppercase letters. So the entire string of
characters we rotate looks like this:

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"

What is the new keyspace of our modified Caesar Cipher?

Does this change the runtime of breaking the modified Caesar Cipher to be in a new
function family? Why or why not?

Programming Problems
For each of these problems (unless otherwise specified), write the needed code directly
in the Python file, in the corresponding function definition.

All programming problems may also be checked by running 'Run File As Script' on the
starter file, which calls the function testAll() to run test cases on all programs.

In this assignment, you will write six functions and these functions will work together to
create an interactive, text-based game of Memory. In the game Memory you start with a
deck of matched cards. Place the cards face-down on the table. In each turn you get to
flip over two face-down cards. If they match, they stay face-up; if they don't, you have to
flip them face-down again. The goal is to flip all the cards face-up in as few turns as
possible.

If you've never played Memory before, try it out here:
https://www.helpfulgames.com/subjects/brain-training/memory.html

Note: #1-#3 can be solved with just the skills you've learned in prior units; we
encourage you to write these early. #4-#6 will be covered in the Managing Large Code
Projects lecture.

https://www.helpfulgames.com/subjects/brain-training/memory.html

#1 - generateBoard(words) - 3pts
First, we need to set up the initial board of cards. Each card is represented by a
two-item list: the first item is the card's value (a string), the second is a Boolean
representing whether the card is face-down or face-up (False for down, True for up).

Write the function generateBoard(words) which takes a list of strings and returns a 2D
list board (a list holding cards, which are 1D lists). The function should create two cards
for each of the words in the list, both with initial flipped values of False (since we want
all the cards in our game to begin face-down).

Once all cards have been added to the board, shuffle the board so the cards are in a
random order. Recall that there's a built-in destructive function that can do this -
random.shuffle.

For example, if we call generateBoard(["dog", "cat"]), it might return [["dog",

False], ["cat", False], ["cat", False], ["dog", False]], though the inner
lists could also be in a different random order.

Important Note: make sure that when you're generating the second card of a pair, it is
not aliased to the first card! That can lead to problems later on.

#2 - displayBoard(board) - 4pts
Next, we need to be able to display the board to the user. We'll display each card as its
index followed by its value if it is face-up, or the string "???" if it is face-down.

Write the function displayBoard(board) which takes a board (a 2D list containing
cards as described above in generateBoard) and prints the board, returning None.
Each card on the board will be printed on a separate line. The line should contain the
index of the card and the card's value (or ??? if it is face-down). You can format the
printed line however you like as long as those two pieces of information are included
and each card is printed on a separate line.

For example, if we call displayBoard([["dog", False], ["cat", True],

["cat", False], ["dog", True]]), (the list above, but with the first "cat" and
second "dog" face-up), it might print:

0: ???

1: cat

2: ???

3: dog

#3 - getFlippedCards(board) - 3pts
We'll need to determine which cards on the board have been flipped to tell when the
game is over. Write the function getFlippedCards(board) which takes the board (a
2D list containing cards as described above) and returns a 1D list of integers. This
function should go through each card on the board and if the card is face-up add the
index this card has in the board into a result list. The result list of indexes should be
returned at the end.

For example, if we call getFlippedCards([["dog", False], ["cat", True],

["cat", False], ["dog", True]]) it will return [1, 3], because the first and
third elements are face-up. If no cards are face-up, just return an empty list.

#4 - loadWords(filename) - 10pts
Instead of providing the words for the game in a list, we'll provide the words for the
game in a file. That file will include all the words that should be used in the game,
separated by commas. For example, a file containing the text

owl,dog,cat

would be used to create a game with a six-item board - two owl cards, two dog cards,
and two cat cards.

Write the function loadWords(filename) which takes the name of a file (a string),
reads the text from that file, and returns a list of the words that occurred in that file. For
example, if the file memory2.txt contains the text shown above,
loadWords("memory2.txt") would return the list ["owl", "dog", "cat"].

Important Note: to test this function, you'll need to download the files memory1.txt,
memory2.txt, and memory3.txt from the course website and place them in the same
folder as hw5.py. But you don't need to include the files in your submission; we'll have
them in the correct place in Gradescope already.

Another note: if your code is fine but Python can't find the files, and you're sure the
files are in the right place, come to office hours! We can help you get your file system
set up correctly (which will be important, as many of the Hw6 projects include file
reading).

#5 - pickIndex(board) - 10pts
To make the game interactive we'll let the user choose which cards to flip over on each
turn by typing in the indexes of the cards they want to flip into the interpreter. We'll have
to make sure to handle bad user inputs without crashing the program!

Write the function pickIndex(board) which takes a board (a 2D list containing cards
as described above) and returns the index of the card to be flipped (an int). The function
should ask the user to pick a card index. Assume that the user will always enter an
integer index. If this index is not in the range of the board, or is the index of a card that
has already been flipped, the function should print out an appropriate error message
and ask the user for an index again. When the user enters a valid index, that index
should be returned as an integer.

For example, if we call pickIndex([["owl", False], ["dog", True], ["cat",

False], ["cat", False], ["owl", False], ["dog", True]]) we might end up
with the following interaction. User input is bolded.

Pick a card index: -1

Out of range. Pick a valid card.

Pick a card index: 6

Out of range. Pick a valid card.

Pick a card index: 1

You've already flipped that card. Pick a different card.

Pick a card index: 2

The function would then return the integer 2. Your prompts and error messages don't
have to be the same as ours, but they should exist and provide relevant information.

We will manually grade this problem. To test it yourself, run testPickIndex() and try
entering numbers out of range, and indexes that have already been flipped, as shown
above. Again, assume that the input will always be an integer value.

Hint: use the board to help determine what is in range and whether the chosen index
has already been flipped.
Hint 2: if you're stuck, look at our tic-tac-toe example from the Managing Large Code
Projects lecture. How did we implement taking turns?

#6 - playMemoryGame(filename) - 10pts

Now we finally have everything we need to actually implement the game! You must use
the five functions written above as helper functions to streamline the game code.

Write the function playMemoryGame(filename) which takes the name of a file that
holds the words to be used in the game. The function should read the words into a list,
set up a memory game based on those words, then run the game with the user until all
cards have been flipped. Here's a high-level algorithm for how playMemoryGame works:

A. First, generate a new board by reading the words from the given file and creating
a starter board based on them. Call loadWords and generateBoard for this.

B. Second, welcome the player to the game and show the starting board to the user.
You'll want to call displayBoard for this.

C. Third, set up a loop that continues until the game is finished. The game is done
when every card in the board has been flipped. To check for this, test whether the
result of calling getFlippedCards on the board contains all the cards or not.

D. Fourth, in each iteration of the loop, have the user pick indexes for two cards that
they want to flip face-up. After a valid index is picked, the card at that index on
the board should have its flipped value set to True and the board should be
displayed again. You'll need to do this twice- once for the first card and again for
the second. You'll want to call pickIndex and displayBoard here (and note that
you'll need to call them more than once!).

E. Fifth, check whether the two cards that were flipped match by comparing their
values. If they match, leave them face-up (don't change anything); if they don't
match, set both flipped values to face-down (False) again. In either case, print
out an appropriate message to the user, then print some kind of line break to
show that the next turn has begun.

F. Finally, keep track of the number of turns the user takes to clear the board. A turn
is a single iteration of the loop (flipping two cards and seeing if they're a match).
You should print out a congratulations message that includes the number of
moves taken at the end of the game.

Once this function is finished, you're done! Play your game to test out how it works. For
example, if we call playMemoryGame("memory1.txt"), where the file memory1.txt

contains the text:

dog,cat

The following text shows what a full game might look like, with user inputs bolded. (Note
that the text continues onto the next page). Your game prompts don't need to be
identical to ours, but they should convey the same information.

Welcome to Memory!

0: ???

1: ???

2: ???

3: ???

Pick a card index: 0

0: dog

1: ???

2: ???

3: ???

Pick a card index: 2

0: dog

1: ???

2: cat

3: ???

Try again!

Pick a card index: 1

0: ???

1: cat

2: ???

3: ???

Pick a card index: 2

0: ???

1: cat

2: cat

3: ???

Good guess!

Pick a card index: 0

0: dog

1: cat

2: cat

3: ???

Pick a card index: 2

You've already flipped that card. Pick a different card.

Pick a card index: 3

0: dog

1: cat

2: cat

3: dog

Good guess!

Good game! You took 3 moves to clear the board.

	Hw5 Form
	Hw5 Template

	AndrewID:
	name:
	Two students are both trying to edit a google doc at the same time and their text: Off
	Two students both want to paint the fence at the same time but one has the: Off
	Two students are tallying votes in an organization but they keep erasing and: Off
	Two students are trying to split the work of a group assignment but cant figure: Off
	Mapper Input Values:
	Mapper Output Values:
	Reducer Input Values:
	Reducer Output Values:
	Manager Actions:
	The server creates a packet of the whole website and sends it as fast as possible: Off
	The server zips up the website to make it as small as possible so none of the: Off
	The server splits the website into packets and makes sure they all get there in: Off
	The server creates packets and sends them all to your browser which puts them: Off
	Your computer goes down: Off
	Your ISP goes down: Off
	A router goes down: Off
	A DNS server goes down: Off
	A CMU server goes down: Off
	All of the CMU servers go down: Off
	encryption:
	Send a small message disguised to look like its from another person: Off
	Send many many different small messages: Off
	Send a request for data that doesnt exist on the server: Off
	Send a request for a lot of data that will require lots of packets in a response: Off
	Listens on computer networks for unencrypted usernames and passwords or: Off
	Writes a virus that listens to data passed within your computer between your: Off
	Uses social engineering to trick people into sharing their usernames and: Off
	Puts ads into websites that track everything you do on the website: Off
	What is the new keyspace of our modified Caesar Cipher:
	function family Why or why not:

