
15-110 Hw3 - Written Portion

Name:

AndrewID:

Complete the following problems in the fillable PDF, or print out the PDF, write your
answers by hand, and scan the results.

When you are finished, upload your hw3.pdf to Hw3 - Written on Gradescope, and
upload your hw3.py file to Hw3 - Programming on Gradescope. Make sure to check
the autograder feedback after you submit!

Written Problems
#1 - 2D Lists - 5pts
#2 - Recursion Tracing - 5pts
#3 - Tracing Towers of Hanoi - 8pts
#4 - Linear Search Debugging - 10pts
#5 - Dictionary Keys and Values - 7pts
#6 - Good Use of Hashing? - 10pts

Programming Problems
#1 - onlyPositive(lst) - 5pts
#2 - getCharacterLines(script, character) - 10pts
#3 - addToEach(lst, x) - 10pts
#4 - recursiveLongestString(lst) - 10pts
#5 - generateBubbles(canvas, bubbleList) - 10pts
#6 - getBookByAuthor(bookInfo, author) - 10pts

Written Problems

#1 - 2D Lists - 5pts
Can attempt after Lists and Methods lecture

Fill in the following table with the values in the 2D list returned by mysteryFunction.
Write an X in the squares that are outside the bounds of the list.

#2 - Recursion Tracing - 5pts
Can attempt after Recursion lecture

Trace the following code, then fill out the table below to indicate all the recursive
function calls that are made, and which value is returned by each function call. You
may not need all of the rows.

Note: in the second column, make sure to indicate the actual returned value, not a set
of arguments, a function call, or an expression.

Function Call Returned Value

gcd(20, 12)

#3 - Tracing Towers of Hanoi - 8pts
Can attempt after Recursion II & Search Algorithms lecture

Recall the algorithm we discussed in class to solve the Towers of Hanoi problem. Use
that algorithm to fill out all the steps needed to move three discs from Peg A to Peg C in
the table below. You might not need to use all the rows.

The three discs are called 1, 2, 3 (where 1 is the smallest and the disc on top). So the
algorithm starts with the discs 1, 2, 3 on Peg A, and should end with 1, 2, 3 on Peg C.
We've done the first step for you.

Peg A Peg B Peg C

Start 1, 2, 3

Step 1 2, 3 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

How many steps would it take to move 4 discs instead of 3?

#4 - Linear Search Debugging - 10pts
Can attempt after Recursion II & Search Algorithms lecture

The following three functions all attempt to implement the algorithm linear search, but
with a twist: instead of identifying whether or not the target occurs in the list, each
function returns the first index where the item occurs, or -1 if it never shows up.
However, only one of the three is correct. Identify which of the three functions is correct,
then explain what is wrong with the other two and how they can be fixed.

Which implementation is correct?
☐ linearSearchA
☐ linearSearchB
☐ linearSearchC

Why are the other two incorrect, and how can they be fixed?

#5 - Dictionary Keys and Values - 7pts
Can attempt after Dictionaries lecture

Given the following set of code:

What are the keys of the dictionary d after this code has run?

For each of the keys you listed above, what is its value associated with that key after
the code has run?

What line of code would you write to add the key-value pair ("hail", 1) to the code?
Assume the line will be added at the end of the current code.

#6 - Good Use of Hashing? - 10pts
Can attempt after Designing Super-Fast Search lecture

Recall our discussion of what hash functions are and what they are used for. Below
we've listed four different scenarios. Each scenario contains a data set, a hash function,
and which values will need to be looked up in the hashtable. Select all the scenarios
where you will generally be able to look up the given values in constant time.

☐ Given a set of integer phone numbers, hash a phone number based on the
phone number itself. Use the hashtable to look up an individual phone number.

☐ Given a set of all the college essays sent to CMU (as strings), hash an essay
based on the first character of the essay ("I want to go to CMU because.."
hashes based on "I"). Use the hashtable to look up an individual essay.

☐ Given a set of string full names (like "Farnam Jahanian"), hash a name by adding
together the numeric ASCII values of all the letters in the name. Use the
hashtable to look up an individual name.

☐ Given a set of lists of high scores (so each list contains integers), hash a list
based on the sum of its scores. Lists can be updated after hashing when new
high scores are added. Use the hashtable to look up an individual high-score list.

☐ None of the situations described above can be searched in constant time.

Programming Problems

For each of these problems (unless otherwise specified), write the needed code directly
in the Python file, in the corresponding function definition.

All programming problems may also be checked by running 'Run File As Script' on the
starter file, which calls the function testAll() to run test cases on all programs.

#1 - onlyPositive(lst) - 5pts
Can attempt after Lists and Methods lecture

Write a function onlyPositive(lst) that takes as input a 2D list and returns a new 1D
list that contains only the positive elements of the original list, in the order they originally
occurred. You may assume the list only has numbers in it.

Example: onlyPositive([[1, 2, 3], [4, 5, 6]]) returns [1, 2, 3, 4, 5, 6],
onlyPositive([[0, 1, 2], [-2, -1, 0], [10, 9, -9]] returns [1, 2, 10, 9],
and onlyPositive([[-4, -3], [-2, -1]]) returns [].

#2 - getCharacterLines(script, character) - 10pts
Can attempt after Lists and Methods lecture

Assume you're provided a string script that has been formatted in a specific way. Each
line of the script begins with a character's name, followed by a colon, followed by their
line of dialogue. Lines are separated by newlines, which are represented in Python by
the string '\n'. For example:

'''Buttercup: You mock my pain.

Man in Black: Life is pain, Highness.

Man in Black: Anyone who says differently is selling something.'''

Using the algorithm provided below, write the function getCharacterLines(script,

character), which takes a script and a character name (both strings) and returns a list
of the lines spoken by that character. The lines should be stripped of the leading
character name and any leading/trailing whitespace. So if we use the following script:

'''Burr: Can I buy you a drink?

Hamilton: That would be nice.

Burr: While we're talking, let me offer you some free advice: talk less.

Hamilton: What?

Burr: Smile more.

Hamilton: Ha.

Burr: Don't let them know what you're against or what you're for.

Hamilton: You can't be serious.

Burr: You want to get ahead?

Hamilton: Yes.

Burr: Fools who run their mouths oft wind up dead.'''

Then:

getCharacterLines(script, "Hamilton") ==

["That would be nice.", "What?", "Ha.", "You can't be serious.", "Yes."]

[continued on next page]

To do this:
1. You should first split the script into lines
2. Then, iterate over the lines of the script

a. For each line, you should check if the character who is saying that line is
the character that was given to you as a parameter.

b. If it is, separate the dialogue line from the rest of the string (note that it
occurs after the colon) and strip any leading/trailing whitespace from it

c. Add the resulting line into a list where you are keeping track of all the lines
for this character.

3. You should return the list of all the lines for this character

Hint: you'll want to use string and list methods and operations to make this problem
more approachable. Specifically:

● split can help you separate the lines of text
● index can help you locate where a line of text switches from name to dialogue
● slicing can help you separate the name from the dialogue
● strip can remove excess whitespace from the front and end of the string

#3 - addToEach(lst, str) - 10pts
Can attempt after References and Memory lecture

Write the function addToEach(lst, str) which takes a list of strings and a string str

and destructively modifies the list so that every element has str concatenated to it,
then returns None. For example, if lst = [“ab”, “fgh”, “deg”], calling the function
addToAll(lst, “xyz”) will evaluate to None, but will also change lst to hold
[“abxyz”, “fghxyz”, “degxyz”].

#4 - recursiveLongestString(lst) - 10pts
Can attempt after Recursion lecture

Write a function recursiveLongestString(lst) that takes a list of strings as input
and returns the longest string in the list. You may assume the list contains at least one
element and there will not be a tie. This function must use recursion in a meaningful
way; a solution that uses a loop or built-in max functions will receive no points.

For example, recursiveLongestString(["a", "bb", "ccc"]) returns "ccc", and
recursiveLongestString(["hi", "its", "fantastic", "here"]) returns
"fantastic".

Hint: what properties does the recursive result have if the function works as expected?
Another hint: consider what the base case for this algorithm should be. It isn't the
usual list base case...

#5 - generateBubbles(canvas, bubbleList) - 10pts
Can attempt after Dictionaries lecture

Write the tkinter function generateBubbles(canvas, bubbleList) which takes a
tkinter canvas and a list of dictionaries, bubbleList, and draws bubbles as described
in bubbleList.

Each dictionary in the bubble list contains exactly four keys: "left", "top", "size",
and "color". The first three all map to integers (the left coordinate, top coordinate, and
diameter size of the bubble), and the fourth maps to a string (its color). Use this
information to draw the bubble (with canvas.create_oval) in the appropriate location,
with the correct size and color.

For example, if we make run the function with the bubble list from the first test:
bubbleList1 = [{"left":150, "top":150, "size":100, "color":"green"}]

We'll get:

[continued on next page]

And the second test, which has:

bubbleList2 = [

{'left': 317, 'top': 269, 'size': 45, 'color': 'red' },

{'left': 118, 'top': 27, 'size': 90, 'color': 'orange'},

{'left': 101, 'top': 321, 'size': 65, 'color': 'yellow'},

{'left': 231, 'top': 219, 'size': 25, 'color': 'pink' },

{'left': 50, 'top': 12, 'size': 20, 'color': 'blue' }]

Should produce this:

The third test randomly generates 10 bubbles using the provided makeNBubbles(n)

function. Try changing the size of n to generate more or less bubbles, and see how it
looks! Your bubbles will be different every time.

Hint: a list of dictionaries might sound intimidating at first, but it's not so bad! Just loop
over the list, access the dictionary using the loop control variable, then index into the
dictionary to get the needed values.

#6 - getBookByAuthor(bookInfo, author) - 10pts
Can attempt after Dictionaries lecture

Dictionaries are very good at searching for keys, but not so good at searching for
values. Write the function getBookByAuthor(bookInfo, author) which takes a
dictionary mapping book titles (strings) to author names (also strings) and an author
name (a string) and returns the book associated with that author, or None if the author
does not appear in the dataset. You are guaranteed that no author will appear more
than once in the dictionary.

For example, calling the function on { "The Hobbit" : "JRR Tolkein", "Harry

Potter and the Sorcerer's Stone" : "JK Rowling", "A Game of Thrones" :

"George RR Martin" } and "JK Rowling" would return "Harry Potter and the

Sorcerer's Stone".

Hint: you basically want to implement linear search over a dictionary instead of a list.
Make sure you use the right kind of loop!

	AndrewID:
	Returned Valuegcd20 12:
	gcd20 12Row1:
	Returned ValueRow2:
	gcd20 12Row2:
	Returned ValueRow3:
	gcd20 12Row3:
	Returned ValueRow4:
	gcd20 12Row4:
	Returned ValueRow5:
	2 3Step 2:
	Peg BStep 2:
	1Step 2:
	2 3Step 3:
	Peg BStep 3:
	1Step 3:
	2 3Step 4:
	Peg BStep 4:
	1Step 4:
	2 3Step 5:
	Peg BStep 5:
	1Step 5:
	2 3Step 6:
	Peg BStep 6:
	1Step 6:
	2 3Step 7:
	Peg BStep 7:
	1Step 7:
	2 3Step 8:
	Peg BStep 8:
	1Step 8:
	2 3Step 9:
	Peg BStep 9:
	1Step 9:
	2 3Step 10:
	Peg BStep 10:
	1Step 10:
	2 3Step 11:
	Peg BStep 11:
	1Step 11:
	How many steps would it take to move 4 discs instead of 3:
	Why are the other two incorrect and how can they be fixed:
	What are the keys of the dictionary d after this code has run:
	the code has run:
	Assume the line will be added at the end of the current code:
	name:
	Text4:
	Text5:
	Text6:
	Text7:
	Text8:
	Text9:
	Text10:
	Text11:
	Text12:
	Text13:
	Text14:
	Text15:
	Text16:
	Text17:
	Text18:
	Text19:
	Text20:
	Text21:
	Text22:
	Text23:
	Text24:
	Text25:
	Text26:
	Text27:
	Text28:
	Text29:
	Text30:
	Text31:
	Text32:
	Text33:
	Text34:
	Text35:
	Text36:
	Text37:
	Text38:
	Text39:
	Text40:
	Text41:
	Text42:
	Text43:
	Text44:
	Text45:
	Text46:
	Text47:
	Text48:
	Text49:
	Text50:
	Text51:
	Text52:
	Check Box53: Off
	Check Box54: Off
	Check Box56: Off
	Check Box57: Off
	Check Box58: Off
	Check Box59: Off
	Check Box60: Off
	Check Box61: Off

