
Programming Problems
For each of these problems (unless otherwise specified), write the needed code directly
in the Python file, in the corresponding function definition.

All programming problems may also be checked by running 'Run File As Script' on the
starter file, which calls the function testAll() to run test cases on all programs.

#1 - Hw2 Code Review - 5pts
It isn't always good enough just to write code that works. It's also important to write code
that is clear and robust - easy to understand and ready to handle a variety of inputs.

To help you learn how to write good code, we will have up to three code reviews this
semester, where you will meet with a course TA to go over the code you wrote for a
previous assignment. The TA will point out things you're doing well and areas where
your code can be cleaner (even if it works already!).

To receive five points for the Hw2 code review, sign up for and attend a code review
session with a TA the weekend of Week 5 of classes. We'll release more details about
how to sign up for and attend these sessions via Piazza.

#2 - sumAnglesAsDegrees(angles) - 10pts
Can attempt after Lists and Methods lecture

When analyzing data, you need to convert the data from one format to another before
processing it. For example, you might have a dataset where angles were measured in
radians, yet you want to find the sum of the angles in degrees.

Write the function sumAnglesAsDegrees(angles) which takes a list of angles in
radians (floats) and returns the sum of those angles in degrees (an integer). To do this,
you will need to change each angle from radians to degrees before adding it to the sum.
You can do this with the library function math.degrees(). Make sure to round the final
result to get an integer answer.

For example, sumAnglesAsDegrees([math.pi/6, math.pi/4, math.pi]) should
convert the radians to approximately 30.0, 45.0, and 180.0, then return 255.



#3 - findMultiples(lst, num) - 10pts
Can attempt after References and Memory lecture

Write a non-destructive function findMultiples(lst, num) that takes a list of
integers and a given positive integer, and returns a new list containing only the
elements that are multiples of num in lst.

For example:
findMultiples([11, 20, 35, 43, 50, 66], 5) returns [20, 35, 50],
and findMultiples([44, 17, -77, 34, -95, 88], 11) returns [44, -77, 88]

#4 - removeMultiples(lst, num) - 10pts
Can attempt after References and Memory lecture

Write a destructive function removeMultiples(lst, num) that takes a list of integers
and a given positive integer, and destructively removes the elements that are multiples
of num in the provided list so that it contains only the original elements that are
non-multiples of num at the end of the function. This function should return None instead
of the list; we'll test it by checking whether the input list was modified properly.

For example:
removeMultiples([1, 2, 3, 4, 5, 6], 3) modifies the list to be [1, 2, 4, 5],
while removeMultiples([4, 15, 70, 35, -9], 2) modifies the list to be [15, -9].

Hint: this is tricky because lst will change as the function runs. You should use an
appropriate loop to account for this - see the course slides! Also, make sure to check for
aliasing issues.



#5 - recursiveReverse(lst) - 10pts
Can attempt after Recursion lecture

Write a function recursiveReverse(lst) that takes a list as input and returns a new
list which has the same elements, but in reverse order. This function must use
recursion in a meaningful way; a solution that uses a loop, built-in reverse functions, or
a slice with a negative step will receive no points.

For example, recursiveReverse([1, 2, 3]) should return [3, 2, 1].


