
Graphs
15-110 – Wednesday 3/18

Learning Goals

• Define core concepts of graphs, including nodes and edges

• Use graphs implemented as dictionaries when reading and tracing
code

• Search for values in graphs using breadth-first search and depth-first
search

2

Graphs

3

Graphs are Like More-Connected Trees

Last week we discussed trees, which let us store data by connecting
nodes to each other to create a hierarchical structure.

Graphs are like trees – they use nodes, and connect those nodes
together. However, they have fewer restrictions on how nodes can be
connected. Any node can be connected to any other node in the
graph.

4

Graphs in the Real World

Graphs show up all the time in real-
world data. We can use them to
represent maps (with locations
connected by roads) and molecules
(with atoms connected by bonds).

We also commonly use graphs in
algorithms, to represent data like
social networks (with people
connected by friendships), or
recommendation engines (with
items connected if they were
purchased together).

5

Graphs are Made of Nodes and Edges

The nodes in a graph are the same as the
nodes in a tree – they hold the values stored
in the structure.

The edges of a graph are the connections
between nodes. Sometimes the edges can
have weights, such as the length of a road or
the cost of a flight.

Edges can be directed (from A to B but not
from B to A unless there is another directed
edge from B to A), or undirected (go in either
direction on an edge between nodes).

The graph to the right is weighted and
undirected; if it was directed, we'd add
arrows to the lines to show directionality.

A

B

E

H

C

G

9

3

2 1 7

5

2

6

D F
4

Coding with Graphs

7

Represent Graphs in Python with Dictionaries

Like trees, graphs are not implemented directly by Python. We need to
use the built-in data structures to represent them.

Our implementation for this class will use a dictionary that maps node
values to lists. This is commonly called an adjacency list.

Unlike the tree representation, graphs will not be nested dictionaries;
we'll be able to access all the node values directly. That's because
graphs aren't inherently recursive.

We'll need to slightly alter this representation based on whether or not
the edges of the graph have weights.

8

Graphs in Python – Unweighted Graphs

Graphs with no values on the edges are
called unweighted graphs.

The keys of the dictionary will be the
values of the nodes. Each node maps to
a list of its adjacent nodes (neighbors),
the nodes it has a direct connection
with.

On the right, we show our example
graph in its dictionary implementation.

g = {
"A" : ["B", "G"],
"B" : ["A", "C"],
"C" : ["B", "H"],
"D" : ["F"],
"E" : ["G", "H"],
"F" : ["D"],
"G" : ["A", "E", "H"],
"H" : ["C", "E", "G"]

}

A

B

E

H

C

G

9

D F

Graphs in Python – Weighted Graphs

Weighted graphs have values
associated with the edges. We need to
store these values in the dictionary also.

We'll do this by changing the list of
adjacent nodes to be a 2D list. Each of
the inner lists represents a node/edge
pair, so it has two values – the adjacent
node's value and the weight of the
edge.

On the right, we show our updated
example graph in this format.

A

B

E

H

C

G

5 3

2
91

7

2

10

g = {
"A" : [["B", 5], ["G", 2]],
"B" : [["A", 5], ["C", 3]],
"C" : [["B", 3], ["H", 9]],
"D" : [["F", 4]],
"E" : [["G", 1], ["H", 7]],
"F" : [["D", 4]],
"G" : [["A", 2], ["E", 1], ["H", 2]],
"H" : [["C", 9], ["E", 7], ["G", 2]]
}

D F
4

Example: Most Popular Person

Let's write a function that takes a social
network as a graph and returns the
person in the network who has the
most friends.

This is just our typical find-largest-
property algorithm, but applied to a
graph.

def findMostPopular(g):

biggestCount = 0

mostPopular = None

for person in g:

if len(g[person]) > biggestCount:

biggestCount = len(g[person])

mostPopular = person

return mostPopular

11

Example: Make Invite List

Now let's say that popular person wants
to make even more friends, so they're
holding a party. They want to invite
their own friends, but also anyone who
is a friend of one of their friends.

Now we have to loop over each of the
person's friends, to access that node's
own list of friends.

def makeInviteList(g, person):

invite = g[person] + [] # break alias

for friend in g[person]:

for theirFriend in g[friend]:

if theirFriend not in invite and \

theirFriend != person:

invite.append(theirFriend)

return invite

12

Searching Graphs

13

Searching a graph

Now let's attempt a familiar but more complicated problem: search.

Determining whether a node exists in a graph is too easy (just look at
the keys). We'll ask a more difficult question: can we build a path from
a specific starting node to the node we're looking for?

14

Discuss: How to Search?

How would you systematically
search the graph shown here to
see if there's a path between A
and C?

Alternatively, how would you
systematically check if there's a
path between A and D?

15

A

B

E

H

C

G

9

3

2 1 7

5

2

D F
4

Two Search Algorithms: BFS and DFS

We'll need to start at the start node and follow the edges to find all the other
nodes it's connected to. There are two common approaches for determining
in which order to visit the connected nodes.

In Breadth-First Search (BFS), we slowly move outwards in the graph from
the start node. We visit all the neighbors of start, then visit all the neighbors
of the already visited nodes, etc., until we've checked all the nodes that were
connected to the start node the graph.

In Depth-First Search (DFS), we go all the way down one potential path, then
backtrack and try other possible paths. So we choose one neighbor, then
choose one of its neighbors, etc., until there are no unvisited neighbors left.

16

Breadth-First Search Example

Let's consider Breadth-First Search on our
example graph, starting from A and
searching for C.

A has two neighbors, B and G. We can
visit B and then G, or G and then B.

Once both have been visited, we visit B
and G's neighbors – C, E, and H. (A is a
neighbor as well, but we don't visit it
because it's been visited before.) As soon
as we reach C, we've found the node, and
we're done!

A

B

E

H

C

G

3

2

1

17

D F

B

A

G

C

Breadth-First Search Example

Now let's run Breadth-First Search starting
from A and searching for a value not
connected to it, D.

A has two neighbors – B and G. As before, we
can visit B and then G, or G and then B.

Once both have been visited, we visit B and
G's neighbors – C, E, and H. Again, these can
be visited in any order (CEH, CHE, ECH, EHC,
HEC, HCE). We don't revisit A.

At this point, there are no nodes left that are
neighbors of C, E, and H and have not been
visited. We conclude there is no path from A
to D.

A

B

E

H

C

G

3

2

4

1

5

18

D F

A

B

E

H

C

G

Depth-First Search Example

Now let's search the example graph
starting from A with depth-first search,
searching for C.

There are two possible starting routes: B
or G. Let's choose B. We'll store G as a
backup option, in case we run into a
dead end.

From B, we only have one unvisited
neighbor: C. We've found the node
we're looking for, so we're done!

A

B

E

H

C

G

2

1

19

D F

G

B

C

A

5

Depth-First Search Example

What if we search the example graph starting from
A with depth-first search, now looking for D?

There are two possible starting routes: B or G.
Choose G, and place B in the backup list.

From G, we have two possible routes, E or H;
choose H and mark E as backup. Note that A is not
a valid choice, as it's already been visited.

From H, we have two more possible routes: E or C
(G is not valid). We'll choose C. C's only remaining
neighbor is B (H is not valid), so we must visit it.

Now B has no unvisited neighbors remaining (A and
C are both visited), so we must backtrack to the last
node that had an unvisited neighbor. If we check
our backup list, the only unvisited node remaining
is E (which was G and H's neighbor). We visit E, and
we're done.

A

B

E

H

C

G

3

4

1
2

20

D F

B

EE

H

A

G

C

B

E

Activity: BFS and DFS Tracing

Given the graph to the right and
starting from A, which potential
trace through the graph is a valid
trace for Breadth-First Search, and
then for Depth-First Search?

Choose your answer on Piazza.

Note that not all possible answers
are included. Just visit neighbors
alphabetically (which following the
search rules) to make things simpler.

C

A
B

D

E

F

21

Coding BFS and DFS

To code these search algorithms, we'll need to keep track of two pieces of
data. One is the nodes we need to search next. The other is the nodes
we've already visited. It's important to keep track of what we've visited so
far, to avoid cycling back to nodes we've seen before and looping forever!

We'll use a while loop to iterate over the nodes we need to search, since
we'll update the list as we go. Each iteration will check the next node that
hasn't been visited yet on the to-search list, to see if it's the one we're
looking for.

If we find the node, we'll return True right away. If we don't, we'll add all the
node's neighbors to the to-visit list. How we add the nodes changes based
on whether we implement BFS or DFS.

22

Breadth-First Search Code

23

Note that in the BFS code, we add neighbors of each node we visit to the end of the to-visit
list. This prioritizes neighbors that are connected earlier in the graph.

def breadthFirstSearch(g, start, item):
Set up two lists for visited nodes and to-visit nodes
visited = []
nextNodes = [start]

Repeat while there are nodes to visit
while len(nextNodes) > 0:

next = nextNodes[0]
nextNodes.pop(0)

Only check this node if we haven't visited it before, to avoid repeats
if next not in visited:

visited.append(next)

if next == item: # If it's what we're looking for- we're done!
return True

else: # Otherwise, add the neighbors to the back of the to-visit list
nextNodes = nextNodes + g[next]

return False

Depth-First Search Code
In the DFS code, we add neighbors of each node we visit to the start of the to-visit list. This prioritizes
neighbors that are connected deeper inside the graph. Otherwise, the algorithm is the same.

def depthFirstSearch(g, start, item):
Set up two lists for visited nodes and to-visit nodes
visited = []
nextNodes = [start]

Repeat while there are nodes to visit
while len(nextNodes) > 0:

next = nextNodes[0]
nextNodes.pop(0)

Only check this node if we haven't visited it before, to avoid repeats
if next not in visited:

visited.append(next)

if next == item: # If it's what we're looking for- we're done!
return True

else: # Otherwise, add the neighbors to the front of the to-visit list
nextNodes = g[next] + nextNodes

return False
24

Testing BFS and DFS

We only change one line of code between BFS
and DFS, but it makes a big difference in the way
the algorithms work. The test code to the right
demonstrates how the algorithm moves
through the nodes of an example graph for two
different nodes.

When we search for "D", BFS is more efficient-
it only needs to check three nodes, compared to
DFS's four. But when we search for "E", DFS
only takes three moves, compared to BFS's five!

Both algorithms are O(n), where n is the
number of nodes in the graph, because both
must check every node in the graph in the case
that the sought node doesn't exist and the
graph is fully connected.

g = { "A" : ["B", "D", "F"],

"B" : ["A", "E"],

"C" : [],

"D" : ["A", "E"],

"E" : ["A", "B", "D"],

"F" : ["A"]

}

breadthFirstSearch(g, "A", "D")

breadthFirstSearch(g, "A", "E")

depthFirstSearch(g, "A", "D")

depthFirstSearch(g, "A", "E")

25

Learning Goals

• Define core concepts of graphs, including nodes and edges

• Use graphs implemented as dictionaries when reading and tracing
code

• Search for values in graphs using breadth-first search and depth-first
search

26

