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Learning Goals

• Define core concepts of graphs, including nodes and edges

• Use graphs implemented as dictionaries when reading and tracing 
code

• Search for values in graphs using breadth-first search and depth-first 
search
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Graphs
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Graphs are Like More-Connected Trees

Last week we discussed trees, which let us store data by connecting 
nodes to each other to create a hierarchical structure.

Graphs are like trees – they use nodes, and connect those nodes 
together. However, they have fewer restrictions on how nodes can be 
connected. Any node can be connected to any other node in the 
graph.
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Graphs in the Real World

Graphs show up all the time in real-
world data. We can use them to 
represent maps (with locations 
connected by roads) and molecules
(with atoms connected by bonds).

We also commonly use graphs in 
algorithms, to represent data like 
social networks (with people 
connected by friendships), or 
recommendation engines (with 
items connected if they were 
purchased together).
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Graphs are Made of Nodes and Edges

The nodes in a graph are the same as the 
nodes in a tree – they hold the values stored 
in the structure.

The edges of a graph are the connections 
between nodes. Sometimes the edges can 
have weights, such as the length of a road or 
the cost of a flight.

Edges can be directed (from A to B but not 
from B to A unless there is another directed 
edge from B to A), or undirected (go in either 
direction on an edge between nodes). 

The graph to the right is weighted and  
undirected; if it was directed, we'd add 
arrows to the lines to show directionality.
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Coding with Graphs
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Represent Graphs in Python with Dictionaries

Like trees, graphs are not implemented directly by Python. We need to 
use the built-in data structures to represent them.

Our implementation for this class will use a dictionary that maps node 
values to lists. This is commonly called an adjacency list.

Unlike the tree representation, graphs will not be nested dictionaries; 
we'll be able to access all the node values directly. That's because 
graphs aren't inherently recursive.

We'll need to slightly alter this representation based on whether or not
the edges of the graph have weights.
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Graphs in Python – Unweighted Graphs

Graphs with no values on the edges are 
called unweighted graphs.

The keys of the dictionary will be the 
values of the nodes. Each node maps to 
a list of its adjacent nodes (neighbors), 
the nodes it has a direct connection 
with.

On the right, we show our example 
graph in its dictionary implementation.

g = { 
"A" : [ "B", "G" ],
"B" : [ "A", "C" ],
"C" : [ "B", "H" ],
"D" : [ "F" ],
"E" : [ "G", "H" ],
"F" : [ "D" ],
"G" : [ "A", "E", "H" ],
"H" : [ "C", "E", "G" ]

}
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Graphs in Python – Weighted Graphs

Weighted graphs have values 
associated with the edges. We need to 
store these values in the dictionary also.

We'll do this by changing the list of 
adjacent nodes to be a 2D list. Each of 
the inner lists represents a node/edge 
pair, so it has two values – the adjacent 
node's value and the weight of the 
edge.

On the right, we show our updated 
example graph in this format.
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g = { 
"A" : [ ["B", 5], ["G", 2] ],
"B" : [ ["A", 5], ["C", 3] ],
"C" : [ ["B", 3], ["H", 9] ],
"D" : [ ["F", 4] ],
"E" : [ ["G", 1], ["H", 7] ],
"F" : [ ["D", 4] ],
"G" : [ ["A", 2], ["E", 1], ["H", 2] ],
"H" : [ ["C", 9], ["E", 7], ["G", 2] ]
}
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Example: Most Popular Person

Let's write a function that takes a social 
network as a graph and returns the 
person in the network who has the 
most friends.

This is just our typical find-largest-
property algorithm, but applied to a 
graph.

def findMostPopular(g):

biggestCount = 0

mostPopular = None

for person in g:

if len(g[person]) > biggestCount:

biggestCount = len(g[person])

mostPopular = person

return mostPopular
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Example: Make Invite List

Now let's say that popular person wants 
to make even more friends, so they're 
holding a party. They want to invite 
their own friends, but also anyone who 
is a friend of one of their friends.

Now we have to loop over each of the 
person's friends, to access that node's 
own list of friends.

def makeInviteList(g, person):

invite = g[person] + [ ] # break alias

for friend in g[person]:

for theirFriend in g[friend]:

if theirFriend not in invite and \

theirFriend != person:

invite.append(theirFriend)

return invite
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Searching Graphs
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Searching a graph

Now let's attempt a familiar but more complicated problem: search.

Determining whether a node exists in a graph is too easy (just look at 
the keys). We'll ask a more difficult question: can we build a path from 
a specific starting node to the node we're looking for?
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Discuss: How to Search?

How would you systematically 
search the graph shown here to 
see if there's a path between A 
and C?

Alternatively, how would you 
systematically check if there's a 
path between A and D?
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Two Search Algorithms: BFS and DFS

We'll need to start at the start node and follow the edges to find all the other 
nodes it's connected to. There are two common approaches for determining 
in which order to visit the connected nodes.

In Breadth-First Search (BFS), we slowly move outwards in the graph from 
the start node. We visit all the neighbors of start, then visit all the neighbors 
of the already visited nodes, etc., until we've checked all the nodes that were 
connected to the start node the graph.

In Depth-First Search (DFS), we go all the way down one potential path, then 
backtrack and try other possible paths. So we choose one neighbor, then 
choose one of its neighbors, etc., until there are no unvisited neighbors left.
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Breadth-First Search Example

Let's consider Breadth-First Search on our 
example graph, starting from A and 
searching for C.

A has two neighbors, B and G. We can 
visit B and then G, or G and then B.

Once both have been visited, we visit B 
and G's neighbors – C, E, and H. (A is a 
neighbor as well, but we don't visit it 
because it's been visited before.) As soon 
as we reach C, we've found the node, and 
we're done!
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Breadth-First Search Example

Now let's run Breadth-First Search starting 
from A and searching for a value not 
connected to it, D.

A has two neighbors – B and G. As before, we 
can visit B and then G, or G and then B.

Once both have been visited, we visit B and 
G's neighbors – C, E, and H. Again, these can 
be visited in any order (CEH, CHE, ECH, EHC, 
HEC, HCE). We don't revisit A.

At this point, there are no nodes left that are 
neighbors of C, E, and H and have not been 
visited. We conclude there is no path from A 
to D.
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Depth-First Search Example

Now let's search the example graph 
starting from A with depth-first search, 
searching for C.

There are two possible starting routes: B 
or G. Let's choose B. We'll store G as a 
backup option, in case we run into a 
dead end.

From B, we only have one unvisited 
neighbor: C. We've found the node 
we're looking for, so we're done!
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5

Depth-First Search Example

What if we search the example graph starting from 
A with depth-first search, now looking for D?

There are two possible starting routes: B or G. 
Choose G, and place B in the backup list.

From G, we have two possible routes, E or H; 
choose H and mark E as backup. Note that A is not 
a valid choice, as it's already been visited.

From H, we have two more possible routes: E or C 
(G is not valid). We'll choose C. C's only remaining 
neighbor is B (H is not valid), so we must visit it.

Now B has no unvisited neighbors remaining (A and 
C are both visited), so we must backtrack to the last 
node that had an unvisited neighbor. If we check 
our backup list, the only unvisited node remaining 
is E (which was G and H's neighbor). We visit E, and 
we're done.
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Activity: BFS and DFS Tracing

Given the graph to the right and 
starting from A, which potential 
trace through the graph is a valid 
trace for Breadth-First Search, and 
then for Depth-First Search?

Choose your answer on Piazza.

Note that not all possible answers 
are included. Just visit neighbors 
alphabetically (which following the 
search rules) to make things simpler.
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Coding BFS and DFS

To code these search algorithms, we'll need to keep track of two pieces of 
data. One is the nodes we need to search next. The other is the nodes 
we've already visited. It's important to keep track of what we've visited so 
far, to avoid cycling back to nodes we've seen before and looping forever!

We'll use a while loop to iterate over the nodes we need to search, since 
we'll update the list as we go. Each iteration will check the next node that 
hasn't been visited yet on the to-search list, to see if it's the one we're 
looking for. 

If we find the node, we'll return True right away. If we don't, we'll add all the 
node's neighbors to the to-visit list. How we add the nodes changes based 
on whether we implement BFS or DFS.
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Breadth-First Search Code
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Note that in the BFS code, we add neighbors of each node we visit to the end of the to-visit 
list. This prioritizes neighbors that are connected earlier in the graph.

def breadthFirstSearch(g, start, item):
# Set up two lists for visited nodes and to-visit nodes
visited = [ ]
nextNodes = [ start ]

# Repeat while there are nodes to visit
while len(nextNodes) > 0:

next = nextNodes[0]
nextNodes.pop(0)

# Only check this node if we haven't visited it before, to avoid repeats
if next not in visited:

visited.append(next)

if next == item: # If it's what we're looking for- we're done!
return True

else: # Otherwise, add the neighbors to the back of the to-visit list
nextNodes = nextNodes + g[next]

return False



Depth-First Search Code
In the DFS code, we add neighbors of each node we visit to the start of the to-visit list. This prioritizes 
neighbors that are connected deeper inside the graph. Otherwise, the algorithm is the same.

def depthFirstSearch(g, start, item):
# Set up two lists for visited nodes and to-visit nodes
visited = [ ]
nextNodes = [ start ]

# Repeat while there are nodes to visit
while len(nextNodes) > 0:

next = nextNodes[0]
nextNodes.pop(0)

# Only check this node if we haven't visited it before, to avoid repeats
if next not in visited:

visited.append(next)

if next == item: # If it's what we're looking for- we're done!
return True

else: # Otherwise, add the neighbors to the front of the to-visit list
nextNodes = g[next] + nextNodes

return False
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Testing BFS and DFS

We only change one line of code between BFS 
and DFS, but it makes a big difference in the way 
the algorithms work. The test code to the right 
demonstrates how the algorithm moves 
through the nodes of an example graph for two 
different nodes.

When we search for "D", BFS is more efficient-
it only needs to check three nodes, compared to 
DFS's four. But when we search for "E", DFS 
only takes three moves, compared to BFS's five!

Both algorithms are O(n), where n is the 
number of nodes in the graph, because both 
must check every node in the graph in the case 
that the sought node doesn't exist and the 
graph is fully connected.

g = { "A" : [ "B", "D", "F" ],

"B" : [ "A", "E" ],

"C" : [ ],

"D" : [ "A", "E" ],

"E" : [ "A", "B", "D" ],

"F" : [ "A" ] 

}

breadthFirstSearch(g, "A", "D")

breadthFirstSearch(g, "A", "E")

depthFirstSearch(g, "A", "D")

depthFirstSearch(g, "A", "E")
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Learning Goals

• Define core concepts of graphs, including nodes and edges

• Use graphs implemented as dictionaries when reading and tracing 
code

• Search for values in graphs using breadth-first search and depth-first 
search
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