
Trees
15-110 – Wednesday 3/04

Learning Goals

• Understand how a hierarchical data structure uses recursion to store data

• Define core concepts of trees, including nodes, children, the root, and leaves

• Identify the difference between trees, binary trees, and binary search trees

• Search for values in binary search trees using binary search

• Use trees and binary trees implemented with dictionaries when reading and
writing code

2

Trees

3

Trees Hold Hierarchical Data

Sometimes we work with data that is hierarchical in nature. In this
context, 'hierarchical' means that data occurs at different levels and is
connected in some way.

Hierarchical data shows up in many different contexts.
• File systems in computers- each folder is a rank about the files it contains

• Company organization schemas- the CEO at the top, interns at the bottom

• Sports tournament brackets- the overall winner is ranked highest

4

Trees are Hierarchical

A tree is a hierarchical data structure
composed of nodes (circles) in the
example shown to the right.

Each node can hold a value (its data).

The node the level above a node is
called its parent, and nodes
connected on the level below are
called its children. In general, a node
can have 0 or more children.

3

5 7

1 4

9

8

node

node 5's children

5

node 5's parent

Trees are Upside-down

Unlike real trees, trees in computer science
grow downward!

The top-most node is called the root. Every
(non-empty) tree has a root. The root has
no parent.

On the other hand, a node can have other
nodes as children, and those nodes can
have children as well. The number of levels
a tree can have is unlimited.

Nodes at the bottom with no children are
called leaves.

3

5 7

1 4

9

8

leaves

root

6

Trees are Recursive

A tree is a naturally recursive data structure.
Each node's children are subtrees.

For example, the root node 3 has two
subtrees. The subtree on the left has a root
node 5. The subtree on the right has a root
node 7. Each of these root nodes have
subtrees as children.

Our base case can be a leaf (or even an
empty tree).

The recursive case is a node and its children
which are also trees.

3

5 7

1

root

7

4 8

subtree
subtree

Binary Trees

It's possible to write algorithms
for trees that have an arbitrary
number of children, but in this
class we'll focus on binary trees.

A binary tree is a tree that can
have at most 2 children per node.
We assign these children names-
left and right, based on their
position.

6

3 2

7 98

6's left child 6's right child

8

Coding with Trees

9

Implementing New Data Structures

Computer science uses a large number of classical data structures.
Some of these (like lists and dictionaries) are implemented directly by
Python. Others (like hashtables) are not implemented directly; we need
to design an implementation ourselves.

Python does not implement trees directly. We'll implement trees using
recursively nested dictionaries.

Sidebar: these trees will be mutable; we can change the values in them
and add/remove values. That's beyond the scope of this class, though.

10

Python Syntax – Trees as Dictionaries

Each node of the tree will be a
dictionary that has three keys.

• The first key is the string "value",
which maps to the value in the node.

• The second key is the string "left",
which either maps to a node
(dictionary) if the node has a left child,
or None if there is no left child.

• The third key is the string "right",
which either maps to a node
(dictionary) if the node has a right
child, or None if there is no right child.

Our example tree is written as a
dictionary to the right.

11

t = { "value" : 6,
"left" : { "value" : 3,

"left" : { "value" : 8,
"left" : None,
"right" : None },

"right" : { "value" : 7,
"left" : None,
"right" : None } },

"right" : { "value" : 2,
"left" : None,
"right" : { "value" : 9,

"left" : None,
"right" : None } } }

6

3 2

7 98

Use Recursion When Coding with Trees

Because a tree is a recursive data structure, we'll usually need to use recursion to
find a solution.

The base case is when the current node is a leaf and we need to do something with
its value.

In the recursive case, we'll call the function recursively on both the left and the
right child (if they exist). Usually we'll then combine those results in some way with
the node's value.

Alternative approach: Make the base case when the tree is None (an empty tree). It
can be more confusing to think about, but is often simpler to program.

12

Example: sumTree

Let's write a program that takes a
tree of integers and sums all of the
integers together.

The base case: return the leaf's value
directly.

The recursive case: add the sums of
the left and right children to the
value.

def sumTree(t):

if t["left"] == None and \

t["right"] == None:

return t["value"]

else:

result = t["value"]

if t["left"] != None:

result += sumTree(t["left"])

if t["right"] != None:

result += sumTree(t["right"])

return result

13

Example: sumTree – Different Base Case

Alternatively, we could solve this by
checking a different base case:
whether the node is an empty tree
(if the current node is None).

An empty tree has a sum of 0; a non-
empty tree has a sum based on its
node and the sums of its left and
right subtrees.

The difference here is that there are
recursive calls to both children, even
if they might be None.

def sumTree(t):

if t == None:

return 0

result = t["value"]

result += sumTree(t["left"])

result += sumTree(t["right"])

return result

14

Advanced Example: Family Trees

Now let's write a function that takes a family tree as data.

We have to flip the tree – the child is at the root, their parents are the node's
children, etc.

15

root

leaf

Advanced Example: getPastGen

Let's write a function that finds all
the child's ancestors from N
generations ago. N=1 would be
their parents; N=2 would be
grandparents; etc.

Note that for this problem, our
base case is not a leaf- it's when
we reach the generation we're
looking for.

def getPastGen(t, n):

if n == 0:

return [t["value"]]

else:

gen = []

if t["left"] != None:

gen += getPastGen(t["left"], n-1)

if t["right"] != None:

gen += getPastGen(t["right"], n-1)

return gen

16

Activity: listValues

You do: write the function listValues(t), which takes a tree and returns
a list of all the values in the tree, in left-to-right order.

Hint: Get the list of values for the left-subtree, then the current value, then
the list for the right-subtree.

Given our example tree (shown below), the function should return
[8, 3, 7, 6, 2, 9].

You can test your code by copying the example tree's
implementation on Slide 10.

17

6

3 2

7 98

Another Example: Search

How could we search a tree to see if it contains
a given value? A value could be in any part of a
tree, which means we need to check every
single node to determine if the value exists.

We have two base cases: one for when we reach
an empty tree, and one for when we find the
item. In the recursive case, check if either
subtree contains the item.

Efficiency: if there are n nodes in the tree, in the
worst case we visit each node once; this is O(n).
That's no better than linear search- can we do
better?

def search(t, target):

if t == None:

return False

elif t["value"] == target:

return True

else:

return search(t["left"], target) or \

search(t["right"], target)

18

Binary Search Trees

20

Specialized Data Structures

We can improve the performance of search on a tree, but to do so,
we'll need to restrict how data is organized in the structure.

We've done this before! We're able to search for values in a hashtable
in O(1) time, but we must use immutable values and have to store
them according to a hash function. We're able to search a list in O(log
n) time, but we must make sure the list is sorted first.

For trees, we'll use a similar restriction to lists. We'll 'sort' the tree by
restricting where nodes can be located.

21

Binary Search Trees (BST) are "sorted"

For every node n in a tree which has
a value v:

• Each left child (and all its children,
etc.) must be strictly less than v

• Each right child (and all its children,
etc.) must be strictly greater than v

Note: the left and right subtrees are
BSTs! BSTs are recursive!

7

3 8

6 92

22

3

4

71

6

9

8

3

Example: Is this a BST?

23

yesno

3

51

4

6

82

Binary Search Trees Can Use Binary Search

When we want to search for the value
5 in the tree to the left, we start at the
root node, 7. Because all nodes less
than 7 must be in the left child tree,
and 5 is less than 7, we only need to
search the left child tree.

Then, when we compare 5 to 3, we
know that all values greater than 3 (but
less than 7) must be in the right child of
3, and 5 is greater than 3. So we only
need to search the right child.

This is just binary search! Hence, Binary
Search Tree (BST).

7

3 8

6 92

24

7

3

6

BST Search in Python

We would write binary search for a BST as follows:

def search(t, target):

if target == None:

return False

elif t["value"] == target:

return True

elif target < t["value"]:

return search(t["left"], target)

else:

return search(t["right"], target)

Note that we do just one recursive call, either on the left subtree or on the right subtree.

25

BST Search Runtime – Balanced Trees

Let's consider the runtime of search on
a BST that is balanced.

A tree is balanced if for every node in
the tree, the node's left and right
subtrees are approximately the same
size. This results in a tree that minimizes
the number of recursive levels.

Every time you take a search step in a
balanced tree, you cut the number of
nodes to be searched in half. This
means that you'll take O(log n) time, like
with ordinary binary search.

6

3 8

5 92 7

26

BST Search Runtime – Unbalanced Trees

A tree is considered unbalanced if at least
one node has significantly different sizes
in its left and right children. For example,
consider the tree on the right.

This is a valid BST, but it is still difficult to
search! If you search it for a number like
6, it can still take O(n) time.

When we put data into BSTs, we usually
strive to make them balanced, to avoid
these edge cases. You can assume the
average runtime will be O(log n).

9

8

5

3

7

27

Benefits of BSTs

At first glance, BSTs may seem less useful than hashtables or dictionaries. However,
they can have perks!

For example, storing data in a BST lets us quickly find data that is close to a specific
value, in addition to searching for a value itself. This can provide contextual
information, and makes certain tasks (like looking for a good-enough value) much
easier.

BSTs also make it much easier to add new data to a dataset. In a sorted list, you
would need to slide a bunch of values over; in a BST, you can just search for this
new value and when you reach a leaf, add a node with the new value.

In general, try to choose a data structure that matches the task you need to solve.

28

Learning Goals

• Understand how a hierarchical data structure uses recursion to store data

• Define core concepts of trees, including nodes, children, the root, and leaves

• Identify the difference between trees, binary trees, and binary search trees

• Search for values in binary search trees using binary search

• Use trees and binary trees implemented with dictionaries when reading and
writing code

29

