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Learning Goals

• Understand how a hierarchical data structure uses recursion to store data

• Define core concepts of trees, including nodes, children, the root, and leaves

• Identify the difference between trees, binary trees, and binary search trees

• Search for values in binary search trees using binary search

• Use trees and binary trees implemented with dictionaries when reading and 
writing code
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Trees
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Trees Hold Hierarchical Data

Sometimes we work with data that is hierarchical in nature. In this 
context, 'hierarchical' means that data occurs at different levels and is 
connected in some way.

Hierarchical data shows up in many different contexts.
• File systems in computers- each folder is a rank about the files it contains

• Company organization schemas- the CEO at the top, interns at the bottom

• Sports tournament brackets- the overall winner is ranked highest

4



Trees are Hierarchical

A tree is a hierarchical data structure 
composed of nodes (circles) in the 
example shown to the right.

Each node can hold a value (its data).

The node the level above a node is 
called its parent, and nodes 
connected on the level below are 
called its children. In general, a node 
can have 0 or more children.

3

5 7

1 4

9

8

node

node 5's children

5

node 5's parent



Trees are Upside-down

Unlike real trees, trees in computer science 
grow downward!

The top-most node is called the root. Every 
(non-empty) tree has a root.  The root has 
no parent.

On the other hand, a node can have other 
nodes as children, and those nodes can 
have children as well. The number of levels 
a tree can have is unlimited.

Nodes at the bottom with no children are 
called leaves.
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Trees are Recursive

A tree is a naturally recursive data structure. 
Each node's children are subtrees. 

For example, the root node 3 has two 
subtrees.  The subtree on the left has a root 
node 5.  The subtree on the right has a root 
node 7.  Each of these root nodes have 
subtrees as children.

Our base case can be a leaf (or even an 
empty tree). 

The recursive case is a node and its children 
which are also trees.
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Binary Trees

It's possible to write algorithms 
for trees that have an arbitrary 
number of children, but in this 
class we'll focus on binary trees.

A binary tree is a tree that can 
have at most 2 children per node. 
We assign these children names-
left and right, based on their 
position.
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Coding with Trees
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Implementing New Data Structures

Computer science uses a large number of classical data structures. 
Some of these (like lists and dictionaries) are implemented directly by 
Python. Others (like hashtables) are not implemented directly; we need 
to design an implementation ourselves.

Python does not implement trees directly. We'll implement trees using
recursively nested dictionaries.

Sidebar: these trees will be mutable; we can change the values in them 
and add/remove values. That's beyond the scope of this class, though.
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Python Syntax – Trees as Dictionaries

Each node of the tree will be a 
dictionary that has three keys.

• The first key is the string "value", 
which maps to the value in the node.

• The second key is the string "left", 
which either maps to a node 
(dictionary) if the node has a left child, 
or None if there is no left child.

• The third key is the string "right", 
which either maps to a node 
(dictionary) if the node has a right 
child, or None if there is no right child.

Our example tree is written as a 
dictionary to the right.
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t = { "value" : 6,
"left"  : { "value" : 3,

"left"  : { "value" : 8,
"left"  : None,
"right" : None },

"right" : { "value" : 7,
"left"  : None,
"right" : None } },

"right" : { "value" : 2,
"left"  : None,
"right" : { "value" : 9,

"left"  : None,
"right" : None } } }
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Use Recursion When Coding with Trees

Because a tree is a recursive data structure, we'll usually need to use recursion to 
find a solution.

The base case is when the current node is a leaf and we need to do something with 
its value.

In the recursive case, we'll call the function recursively on both the left and the 
right child (if they exist). Usually we'll then combine those results in some way with 
the node's value.

Alternative approach: Make the base case when the tree is None (an empty tree). It 
can be more confusing to think about, but is often simpler to program.
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Example: sumTree

Let's write a program that takes a 
tree of integers and sums all of the 
integers together.

The base case: return the leaf's value 
directly.

The recursive case: add the sums of 
the left and right children to the 
value.

def sumTree(t):

if t["left"] == None and \

t["right"] == None:

return t["value"]

else:

result = t["value"]

if t["left"] != None:

result += sumTree(t["left"])

if t["right"] != None:

result += sumTree(t["right"])

return result
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Example: sumTree – Different Base Case

Alternatively, we could solve this by 
checking a different base case: 
whether the node is an empty tree 
(if the current node is None).

An empty tree has a sum of 0; a non-
empty tree has a sum based on its 
node and the sums of its left and 
right subtrees.

The difference here is that there are  
recursive calls to both children, even 
if they might be None.

def sumTree(t):

if t == None:

return 0

result = t["value"]

result += sumTree(t["left"])

result += sumTree(t["right"])

return result
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Advanced Example: Family Trees

Now let's write a function that takes a family tree as data.

We have to flip the tree – the child is at the root, their parents are the node's 
children, etc.
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Advanced Example: getPastGen

Let's write a function that finds all 
the child's ancestors from N 
generations ago. N=1 would be 
their parents; N=2 would be 
grandparents; etc.

Note that for this problem, our 
base case is not a leaf- it's when 
we reach the generation we're 
looking for.

def getPastGen(t, n):

if n == 0:

return [ t["value"] ]

else:

gen = [ ]

if t["left"] != None:

gen += getPastGen(t["left"], n-1)

if t["right"] != None:

gen += getPastGen(t["right"], n-1)

return gen
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Activity: listValues

You do: write the function listValues(t), which takes a tree and returns 
a list of all the values in the tree, in left-to-right order.

Hint: Get the list of values for the left-subtree, then the current value, then 
the list for the right-subtree.

Given our example tree (shown below), the function should return              
[8, 3, 7, 6, 2, 9].

You can test your code by copying the example tree's
implementation on Slide 10.
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Another Example: Search

How could we search a tree to see if it contains 
a given value? A value could be in any part of a 
tree, which means we need to check every 
single node to determine if the value exists.

We have two base cases: one for when we reach 
an empty tree, and one for when we find the 
item. In the recursive case, check if either 
subtree contains the item.

Efficiency: if there are n nodes in the tree, in the 
worst case we visit each node once; this is O(n). 
That's no better than linear search- can we do 
better?

def search(t, target):

if t == None:

return False

elif t["value"] == target:

return True

else:

return search(t["left"], target) or \

search(t["right"], target)

18



Binary Search Trees
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Specialized Data Structures

We can improve the performance of search on a tree, but to do so, 
we'll need to restrict how data is organized in the structure.

We've done this before! We're able to search for values in a hashtable
in O(1) time, but we must use immutable values and have to store 
them according to a hash function. We're able to search a list in O(log 
n) time, but we must make sure the list is sorted first.

For trees, we'll use a similar restriction to lists. We'll 'sort' the tree by 
restricting where nodes can be located.
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Binary Search Trees (BST) are "sorted"

For every node n in a tree which has 
a value v:

• Each left child (and all its children, 
etc.) must be strictly less than v

• Each right child (and all its children, 
etc.) must be strictly greater than v

Note: the left and right subtrees are 
BSTs!  BSTs are recursive!
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Binary Search Trees Can Use Binary Search

When we want to search for the value 
5 in the tree to the left, we start at the 
root node, 7. Because all nodes less 
than 7 must be in the left child tree, 
and 5 is less than 7, we only need to 
search the left child tree.

Then, when we compare 5 to 3, we 
know that all values greater than 3 (but 
less than 7) must be in the right child of 
3, and 5 is greater than 3. So we only 
need to search the right child.

This is just binary search! Hence, Binary 
Search Tree (BST).
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BST Search in Python

We would write binary search for a BST as follows:

def search(t, target):

if target == None:

return False

elif t["value"] == target:

return True

elif target < t["value"]:

return search(t["left"], target)

else:

return search(t["right"], target)

Note that we do just one recursive call, either on the left subtree or on the right subtree.
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BST Search Runtime – Balanced Trees

Let's consider the runtime of search on 
a BST that is balanced.

A tree is balanced if for every node in 
the tree, the node's left and right 
subtrees are approximately the same 
size. This results in a tree that minimizes 
the number of recursive levels.

Every time you take a search step in a 
balanced tree, you cut the number of 
nodes to be searched in half. This 
means that you'll take O(log n) time, like 
with ordinary binary search.
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BST Search Runtime – Unbalanced Trees

A tree is considered unbalanced if at least 
one node has significantly different sizes 
in its left and right children. For example, 
consider the tree on the right.

This is a valid BST, but it is still difficult to 
search! If you search it for a number like 
6, it can still take O(n) time.

When we put data into BSTs, we usually 
strive to make them balanced, to avoid 
these edge cases. You can assume the 
average runtime will be O(log n).
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Benefits of BSTs

At first glance, BSTs may seem less useful than hashtables or dictionaries. However, 
they can have perks!

For example, storing data in a BST lets us quickly find data that is close to a specific 
value, in addition to searching for a value itself. This can provide contextual 
information, and makes certain tasks (like looking for a good-enough value) much 
easier.

BSTs also make it much easier to add new data to a dataset. In a sorted list, you 
would need to slide a bunch of values over; in a BST, you can just search for this 
new value and when you reach a leaf, add a node with the new value.

In general, try to choose a data structure that matches the task you need to solve.
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Learning Goals

• Understand how a hierarchical data structure uses recursion to store data

• Define core concepts of trees, including nodes, children, the root, and leaves

• Identify the difference between trees, binary trees, and binary search trees

• Search for values in binary search trees using binary search

• Use trees and binary trees implemented with dictionaries when reading and 
writing code
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