
Sort Algorithms
15-110 - Friday 2/28

Learning Objectives

• Recognize how different sorting algorithms implement the same
process with different algorithms

• Recognize the general algorithm and trace code for three algorithms:
selection sort, insertion sort, and merge sort

• Compute the Big-O runtimes of selection sort, insertion sort, and
merge sort

2

Search Algorithms Benefit from Sorting

We use search algorithms a lot in computer science. Just think of how
many times a day you use Google, or search for a file on your computer.

We've determined that search algorithms work better when the items
they search over are sorted. Can we write an algorithm to sort items
efficiently?

Note: Python already has built-in sorting functions (sorted(lst) is
non-destructive, lst.sort() is destructive). This lecture is about a
few different algorithmic approaches for sorting.

3

Many Ways of Sorting

There are a ton of algorithms that we can use to sort a list.

We'll use https://visualgo.net/bn/sorting to visualize some of these
algorithms.

Today, we'll specifically discuss three different sorting algorithms:
selection sort, insertion sort, and merge sort. All three do the same
action (sorting), but use different algorithms to accomplish it.

4

https://visualgo.net/bn/sorting

Selection Sort

5

Selection Sort Sorts From Smallest to Largest

The core idea of selection sort is that you sort from smallest to largest.

1. Start with none of the list sorted

2. Repeat the following steps until the whole list is sorted:
a) Search the unsorted part of the list to find the smallest element
b) Swap the found element with the first unsorted element
c) Increment the size of the 'sorted' part of the list by one

Note: for selection sort, swapping the element currently in the front position
with the smallest element is faster than sliding all of the numbers down in
the list.

6

Sidebar: Swapping Elements in a List

We'll often need to swap elements in lists as we sort them. Let's implement
swapping first.

To swap two elements, you need to create a temporary variable to hold one
of them. This keeps the first element from getting overwritten.

def swap(lst, i, j):

tmp = lst[i]

lst[i] = lst[j]

lst[j] = tmp

7

Selection Sort: Repeatedly select the next
smallest and add it to sorted part

8

i smallest
SORTED

UNSORTED

i smallest
SORTED

UNSORTED

j

min
during
loop i

start of
next loop

i

i
swap

UNSORTEDinitially

i=0

Selection Sort Code

def selectionSort(lst):

i is the index of the first unsorted element

everything before it is sorted

for i in range(len(lst)-1):

find the smallest element

smallestIndex = i

for j in range(smallestIndex + 1, len(lst)):

if lst[j] < lst[smallestIndex]:

smallestIndex = j

swap(lst, i, smallestIndex)

return lst

lst = [2, 4, 1, 5, 10, 8, 3, 6, 7, 9]

lst = selectionSort(lst)

print(lst)
9

Selection Sort – Efficiency Analysis

When we analyze the efficiency of sorting algorithms, we'll consider
the number of comparisons and swaps that are performed.

We'll also talk about individual passes of the sorting algorithms. A pass
is a single iteration of the outer loop (or putting a single element into
its sorted location).

10

Selection Sort Code – Comparisons and Swaps

def selectionSort(lst):

i is the index of the first unsorted element

everything before it is sorted

for i in range(len(lst)-1):

find the smallest element

smallestIndex = i

for j in range(smallestIndex + 1, len(lst)):

if lst[j] < lst[smallestIndex]:

smallestIndex = j

swap(lst, i, smallestIndex)

return lst

lst = [2, 4, 1, 5, 10, 8, 3, 6, 7, 9]

lst = selectionSort(lst)

print(lst)
11

A single iteration of this is a pass

Comparison

Swap

Selection Sort – Comparisons

What's the worst case input for Selection Sort?

Answer: Any list, really. The list doesn't affect the actions taken.

How many comparisons does Selection Sort do in the worst case, if the input list
has n elements?

Search for 1st smallest: n-1 comparisons
Search for 2nd smallest: n-2 comparisons
...
Search for 2nd-to-last smallest: 1 comparison

Total comparisons:

(n-1) + (n-2) + ... + 2 + 1 = n * (n-1) / 2 = n2/2 - n/2

12

Selection Sort – Swaps

What about swaps?

The algorithm does a single swap at the end of each pass, and there are
n-1 passes, so there are n-1 swaps.

Overall, we do n2/2 - n/2 + n-1 actions.

This is O(n2).

13

Insertion Sort

14

Insertion Sort Builds From the Front

The core idea of insertion sort is to insert each item into a sorted list at
the front.

1. Start with only the first element of the list sorted

2. Repeat the following steps until the whole list is sorted:
a) Compare the first unsorted element with the element directly to its

left
b) If the unsorted element is smaller, swap the two.
c) Repeat a and b until the unsorted element is bigger.
d) Increment the size of the 'sorted' part of the list by one

15

Insertion Sort : repeatedly insert the next
element into the sorted part

16

SORTED UNSORTED

SORTED UNSORTED

i

i

insert

during
loop i

start of
next loop

initially UNSORTED

i= 1

Insertion Sort Code

def insertionSort(lst):

i is the index of the first unsorted element

everything before it is sorted

for i in range(1, len(lst)):

unsorted = i

compare and swap until unsorted is in the correct place

while unsorted > 0 and lst[unsorted] < lst[unsorted-1]:

swap(lst, unsorted, unsorted-1)

unsorted = unsorted – 1

return lst

lst = [2, 4, 1, 5, 10, 8, 3, 6, 7, 9]

lst = insertionSort(lst)

print(lst)
17

Insertion Sort Code – Comparisons and Swaps

def insertionSort(lst):

i is the index of the first unsorted element

everything before it is sorted

for i in range(1, len(lst)):

unsorted = i

compare and swap until unsorted is in the right place

while unsorted > 0 and lst[unsorted] < lst[unsorted-1]:

swap(lst, unsorted, unsorted-1)

unsorted = unsorted – 1

return lst

lst = [2, 4, 1, 5, 10, 8, 3, 6, 7, 9]

lst = insertionSort(lst)

print(lst)
18

A single iteration of this is a pass

Comparison

Swap

Insertion Sort – Efficiency Analysis

What's the worst case input for Insertion Sort?

Answer: A list that is in reverse sorted order. We'll have to move
every element all the way to the front.

Think-Pair-Share: how many comparisons and swaps happen in
insertion sort in the worst case?

19

Insertion Sort – Comparisons and Swaps

In the worst case: For every comparison, we will also make a swap.

Insert 2nd element: 1 comparison & swap

Insert 3rd element: 2 comparisons & swaps
...
Insert last element: n-1 comparisons & swaps

Total actions:

2*(1 + 2 + ... + (n-1)) = 2 * (n * (n-1) / 2) = n2 - n

= O(n2)

20

Sidebar: Insertion Sort Best Case

Why do we care about insertion sort? While its worst case is just as bad
as Selection Sort, its best case is much better!

The best case for insertion sort is an already-sorted list. On this input,
the algorithm does 1 comparison and no swaps on each pass.

The best-case time for insertion sort is O(n).

21

Merge Sort

22

Improve Efficiency with a Drastic Change

If we want to do better than O(n2), we need to make a drastic change in our
algorithms.

One common strategy is to use Divide and Conquer:

1. Divide the problem into “simpler” versions of itself (usually in two
halves).

2. Conquer each problem using the same process (usually recursively).

3. Combine the results of the “simpler” versions to form your final
solution.

23

Merge Sort Delegates, Then Merges

The core idea of the Merge Sort algorithm is that you sort by merging.

1. If there are less than two elements,

return a copy of the list (it's already sorted)

2. Otherwise...

1. Delegate sorting the front half of the list (recursion!)

2. Delegate sorting the back half of the list (recursion!)

3. Merge the two sorted halves into a new sorted list.

24

Merge Sort Process

6

84 27 49 91 32 53 63 17

84 27 49 91 32 53 63 17

27 49 84 91 17 32 53 63

17 27 32 49 53 63 84 91

Divide:

Conquer: (sort)

Combine: (merge)

Merge Sort Code

def mergeSort(lst):

base case: 0-1 elements are sorted.

if len(lst) < 2:

return lst

divide

mid = len(lst) // 2

front = lst[:mid]

back = lst[mid:]

conquer by sorting

front = mergeSort(front)

back = mergeSort(back)

combine sorted halves

return merge(front, back)
26

Merge By Checking the Front of the Lists

How do we merge two sorted lists?

1. Create a new empty 'result' list

2. Keep track of two pointers to the two lists, each starting at the first element

3. Repeat the following until we've added all the elements of one of the lists:

a) Compare the pointed-to elements in each of the two lists

b) Copy the smaller element to the end of the result list

c) Move the pointer from the smaller element to the next one in the list

4. Move the rest of the unfinished list to the end of the result list

27

Merge Code
def merge(front, back):

result = []
i = 0
j = 0
while i < len(front) and j < len(back):

only compare first two- guaranteed to be smallest due to sorting
if front[i] < back[j]:

result.append(front[i])
i = i + 1

else:
result.append(back[j])
j = j + 1

add remaining elements (only one still has values)
result = result + front[i:] + back[j:]
return result

28

Merge Sort – Efficiency Analysis

Merge Sort doesn't have swaps. Instead, we'll consider the number of
comparisons and copies that are performed.

What's the worst case input? Any list, really; it doesn't matter.

29

Merge Sort Code

def mergeSort(lst):

if len(lst) < 2:

return lst

mid = len(lst) // 2

front = lst[:mid]

back = lst[mid:]

front = mergeSort(front)

back = mergeSort(back)

return merge(front, back)

lst = [2, 4, 1, 5, 10, 8, 3, 6, 7, 9]

lst = mergeSort(lst)

print(lst)

def merge(front, back):

result = []

i = 0

j = 0

while i < len(front) and j < len(back):

if front[i] < back[j]:

result.append(front[i])

i = i + 1

else:

result.append(back[j])

j = j + 1

result = result + front[i:] + back[j:]

return result

30

Comparison

Copy

Copy

Copy

Merge Sort Call Breakdown

31

2 4 1 5 8 3 6 7

1 2 3 4 5 6 7 8

2 4 1 5 8 3 6 7

2 4 1 5

2 4 1 5

2 4 1 5

1 2 4 5 3 6 7 8

8 3 6 7

3 8 6 7

8 3 6 7

Merge Sort Call Breakdown

32

2 4 1 5 8 3 6 7

1 2 3 4 5 6 7 8

2 4 1 5 8 3 6 7

2 4 1 5

2 4 1 5

2 4 1 5

1 2 4 5 3 6 7 8

8 3 6 7

3 8 6 7

8 3 6 7

Split
Pass 1

Split
Pass 2

Split
Pass 3

Merge
Pass 1

Merge
Pass 2

Merge
Pass 3

n copies in each split-pass
n copies + n comparisons in each

merge-pass

Merge Sort Efficiency

How many split-passes and merge-passes occur?

Every time a pass occurs, we cut the number of elements being sorted
in half. The number of passes is the number of times we can divide
the list in half.

That means there are log2n split-passes, and log2n merge-passes.

Overall work: n log n + 2 * (n log n) = 3 * (n log n) = O(n log n)

33

34

Merge vs. Insertion Sort

n insertion sort

n * (n-1) / 2

merge sort

n log
2
n

Ratio

8 28 24 0.85

16 120 64 0.53

32 496 160 0.3

210 523,776 10,240 0.02

220 549,755,289,600 20,971,520 0.00004

Comparing Big-O Functions

25

n

(amount of data)

Number of

Operations

O(2n)

O(1)

O(n log n)

O(log n)

O(n2)

O(n)

Sidebar: General Sorting Efficiency

In general, the best we can do for sorting efficiency is O(n log n). This is
actually the efficiency of the built-in Python sort!

You can't reduce the time to O(n) unless you put certain restrictions on
the values being sorted.

Sorting takes more time than searching most of the time.

36

Learning Objectives

• Recognize how different sorting algorithms implement the same
process with different algorithms

• Recognize the general algorithm and trace code for three algorithms:
selection sort, insertion sort, and merge sort

• Compute the Big-O runtimes of selection sort, insertion sort, and
merge sort

37

