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Learning Objectives

• Define the concepts of efficiency, runtimes, function families, and 
Big-O notation

• Compare the function families that different functions run in

• Identify the worst case and best case of functions

• Calculate a specific function's efficiency using Big-O notation
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Efficiency = Time = Money

We'll talk about efficiency a lot in this unit. Why do we care?

Computers are fast, but they can still take time to do complex actions. 
And people don't like to wait. A faster algorithm can lead to a company 
succeeding where others fail.

A major goal of computer scientists is not just to make algorithms that 
work, but algorithms that work efficiently.
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Linear Search vs. Binary Search
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Comparing Linear vs. Binary Search

Recall when we raced linear search vs. binary search in the previous 
lecture. How can we compare these two algorithms at a more abstract
level?

We could run both on the same input and time them. However, how 
quickly a program runs varies based on lots of factors (the 
implementation, the machine, which other programs are running, etc.)

Instead, we'll count the number of actions the program takes on a 
given input.
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Counting the number of actions

What actions might we count? Recall that some actions, such as adding 
two numbers, become several steps when translated to bytecode. And 
some actions may take longer than other ones to execute.

Instead of trying to count every action, we count how many times the 
algorithm processes each element in the input.

For example, in linear or binary search, we often choose to count the 
total number of comparisons that the algorithms makes to find an 
item.
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1st 4th 3rd 2nd

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Linear vs. Binary Search: Search for 66
def linSearch(lst, item):

if len(lst) == 0:

return False

elif lst[0] == item:

return True

else:

return linSearch(lst[1:], item)

How many list elements are compared to 
66?  

linear search: 9 times
binary search: 4 times

def biSearch(lst, item):

if lst == [ ]:

return False

else:

mid = len(lst) // 2

if lst[mid] == item:

return True

elif item < lst[mid]:

return biSearch(lst[:mid], item)

else: # lst[mid] < item

return biSearch(lst[mid+1:], item)
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Best Case and Worst Case

To truly compare the algorithms, it isn't enough to test them on a 
random example. We want to know how they'll do in the best case, and 
in the worst case, based on the inputs.

Best case: an input of size n that results in the algorithm taking the 
least steps possible.

Worst case: an input of size n that results in the algorithm taking the 
most steps possible.
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Best Case and Worst Case – Linear Search

What's the best case for linear search?

Answer: a list where the item we search for is in the first position

What's the worst case for linear search?

Answer: a list where the item we search for is not in the list.
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Best Case and Worst Case – Binary Search

You do: what's the best case input for binary search?

Answer: TBD

What about the worst case for binary search?

Answer: a list where the item we're searching for doesn't occur
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Best Case/Worst Case Actions

How many actions do we perform in the best case?

For both linear search and binary search, there's just one 
comparison – the list (of any length) for which it finds the item with 
the first comparison.

How many actions in the worst case?

In linear search, we have to check every single element. So if the list 
has n elements, we do n comparisons.

What about binary search?
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Worst Case Action Count – Binary Search

Each recursive call to binary search compares one item of the list. How many 
recursive calls do we make to binary search for different length lists?
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List size Number of recursive calls

1 1

22-1 = 3 2

23-1 = 7 3

24-1 = 15 4

25-1 = 31 5

2k - 1 k

n log2(n)

When the input length 
doubles, linear search 
does twice as many 
comparisons.

But, when the input length 
doubles, binary search 
does just one more 
comparison! Amazing!



Big-O Notation
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Function Families

When we count the actions taken by algorithms, we don't really care about 
one-off operations; we care about actions that are related to the size of the 
input.

In math, a function family is a set of equations that all grow at the same rate 
as their inputs grow. For example, an equation might grow linearly or 
quadratically.

When determining which equation family represents the actions taken by an 
algorithm, we say that n is the size of the input. For a list, that's the number 
of elements; for a string, the number of characters.
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Function Families in Graphs
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Notice that as n grows, 
the two linear functions 
become larger than the 
log(n) function, and the 
n log(n) function becomes 
larger than both linear 
functions, regardless of 
the constants.



Function Families in Graphs
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Even for small n, 
exponential functions 
quickly skyrocket and 
quadratic functions grow 
rapidly compared to linear 
functions.



Big-O Notation

When we determine an equation's function family, we ignore constant 
factors and smaller terms. All that matters is the dominant term (the 
highest power of n). That is the idea of Big-O notation.
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f(n) Big-O

n O(n)

32n + 23 O(n)

5n2 + 6n - 8 O(n2)

18 log(n) O(log n)

Unless specified otherwise, the 
Big-O of an algorithm refers to 
its worst case run time 
(computer scientists are 
pessimists).



Big-O of Linear Search / Binary Search

Because runtime for linear search is proportional to the length of the 
list in the worst case, it is O(n). Every time we double the length of the 
list, binary search does just one more comparison; it is O(log n).
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Except for very small n, 
binary search is blazingly 
fast. Linear search is 
exponentially slower in 
the worst case!



Big-O Calculation
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Big-O Calculation Strategy

We'll often need to calculate the Big-O of an algorithm or a piece of 
code, to determine how efficient it is, and whether we can make it 
better.

We can determine a function's Big-O by determining how many actions 
are added if we increase the size of the input.

Let's go through a bunch of examples to demonstrate.
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O(1) is Constant Time

def swap(lst, i, j):

tmp = lst[i]

lst[i] = lst[j]

lst[j] = tmp
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Does the runtime of this 
algorithm depend on the 
number of items in the list?

Answer: No.

We say that an algorithm is 
constant time when its time 
does not change with the size of 
the input.



O(log n) is Logarithmic Time

def countDigits(n):

count = 0

while n > 0:

n = n // 10

count = count + 1

return count
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Every time you increase n by a 
factor of 10, you do the loop one 
more time. All the operations in 
the loop are constant time. 
Analogous to binary search, the 
algorithm is O(log n).  

Even though it is log10(n), we don't 
include the base in the Big-O 
notation because a change of base 
is just a multiplicative factor.



O(n) is Linear Time

def countdown(n):

for i in range(n, -1, -5):

print(i)
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If we double the size of n, how 
many more times do we go 
through the loop?

Answer: We double the number of 
times through the loop. That is 
linear time, as it is proportional to 
the size of n. Note that stepping by 
5 doesn't change that it is O(n).



O(n2) is Quadratic Time

def multiplicationTable(n):

for i in range(1, n+1):

for j in range(1, n+1):

print(i, "+", j, "=", i*j)

If we double the size of n, we execute the outer loop twice as many times. 
And for each time we execute the outer loop, we execute the inner loop 
twice as many times. Generating the table takes 4 times as long.  

If we triple the size of n, generating the table takes 9 times as long. The 
runtime is proportional to n2.
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O(2n) is Exponential Time

def move(start, tmp, end, num):

if num == 1:

return 1

else:

moves = 0

moves = moves + move(start, end, tmp, num - 1)

moves = moves + move(start, tmp, end, 1)

moves = moves + move(tmp, start, end, num - 1)

return moves
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This is Towers of Hanoi. Every time 
we add one disc, we double the 
number of moves. That's 
exponential time, or O(2n).



Be Careful of Built-in Runtimes!

def countAll(lst):

for i in range(len(lst)):

count = lst.count(i)

print(i, "occurs", count, "times")

This is actually O(n2), because each call to lst.count(i) takes O(n) time.

We'll let you know on assignments and exams when a built-in operation is 
not constant time.
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Activity: Calculate the Big-O of Code

Activity: predict the Big-O runtime of the following piece of code. 

def sumEvens(lst): # n = len(lst)
result = 0
for i in range(len(lst)):

if lst[i] % 2 == 0:
result = result + lst[i]

return result

Submit your answer to Piazza when you're done.
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Learning Objectives

• Define the concepts of efficiency, runtimes, function families, and 
Big-O notation

• Compare the function families that different functions run in

• Identify the worst case and best case of functions

• Calculate a specific function's efficiency using Big-O notation

28


