
Testing and Debugging
15-110 – Monday 02/03



Learning Goals

• Write test cases to determine whether code works properly

• Debug syntax and runtime errors by interpreting error messages

• Debug runtime and logical errors by using the scientific method

2



Testing and Debugging Are As Important as Coding

We spend a lot of time on how to design algorithms and write code, 
but that's only two parts of what programmers do.

It's equally important that you make sure your program works 
correctly. And when it doesn't, you have to figure out how to fix it.

You'll need to use testing & debugging in this class on your own code, 
but also in real life if you interact with an already-written program that 
doesn't work quite correctly.



Testing



Test Cases Check Specific Scenarios

You could test your code by checking whether it outputs the correct 
result on every possible input. But that's too much work!

Instead, we design a set of test cases, where each test case checks if 
the output is correct on a specific input. Inputs are chosen to cover 
different possible scenarios.

If we select a set of test cases that have broad coverage, we can be 
fairly sure that our program works.



Test Output with assert Statements

To write test cases, we'll use assert statements. An assert takes a 
Boolean expression as input, does nothing if the expression evaluates 
to True, and raises an AssertionError if the expression evaluates to 
False.

assert(4 > 2) # does nothing

assert(3 == 5) # raises a runtime error



Input, Actual Output, and Expected Output

To write a test case, you need to represent the three core parts of a 
test – the input, the actual output, and the expected output.

assert(sum1toN(10) == 55)

input

actual output

expected output



Test Cases Should Cover Different Scenarios

A proper set of test cases should cover all the different types of inputs the program 
might encounter.

Normal Case: A typical input that should follow the main path through the code.

Edge Case: A pair of inputs that test different choice points in the code. So if a 
condition in the problem checks whether n < 2, two important inputs are 1 and 2.

Special Case: A 'default' input that may behave differently from normal cases. In 
this class, we've seen the default values 0, 1, and "".

Varying Results: Test cases should cover multiple possible results. This is especially 
important for Boolean functions, which should check results of True and False.

Large Input Case: A typical input, but of a larger size than usual. 



Example: Test Cases for digitCount(num)

Let's make a test case set for a function digitCount(num), which counts the 
number of digits in an integer.

Normal Case: assert(digitCount(1234) == 4)
Edge Case: assert(digitCount(7) == 1)
Special Case: assert(digitCount(0) == 1)
Varying Result: assert(digitCount(20) == 2)
Large Input Case: assert(digitCount(54365463734365) == 14)

You may need several tests of each type to get broad coverage of all possible 
scenarios.



Activity: Design Tests for isPrime(num)

You do: What tests should we write for a function isPrime(num), 
which returns True if the given integer is prime and False otherwise?



Interpreting Errors



Syntax, Runtime, and Logical Errors

In the first week, we discussed the three types of errors Python can 
encounter:

Syntax Errors, which happen when Python can't parse code

Runtime Errors, which happen when the interpreter crashes while running 
code

Logical Errors, which happen when code doesn't work correctly

We'll use slightly different approaches to debug these three types of errors.



Debug Syntax Errors By Reading the Message

When your code generates a SyntaxError, 
the best thing to do is read the error message.

1. Look for the line number. This line tells you 
approximately where the error occurred.

2. Then look for the inline arrow. The position 
gives you more information about the 
location.

3. If you're not sure why a syntax error would 
occur there, compare your code to example 
code from the course slides.

The location Python suggests isn't always 
correct – sometimes the error happens in the 
lines before the suggested location instead.

line number

inline arrow



Debug Runtime Errors By Reading the Message

When your code generates a runtime error, 
the best thing to do is read the error 
message.

1. Look for the line number. This line tells 
you approximately where the error 
occurred.

2. Then look for the error type. The error 
type and its message gives you 
information about what went wrong.

3. If you're not sure why that error would 
occur on that line, use the debugging 
process to investigate.

Any error that is not a SyntaxError, 
IndentationError, or AssertionError
is a runtime error.

line number
error type



Debug Logical Errors By Checking Inputs and Outputs

When your code generates a logical error, 
the best thing to do is compare the 
expected output to the actual output.

1. Copy the function call from the assert
that is failing into the interpreter. 
Compare the actual output to the 
expected output.

2. If the expected output seems incorrect, 
re-read the problem prompt.

3. If you're not sure why the actual output 
is produced, use the debugging process
to investigate.

If you've written the test set yourself, you 
should also take a moment to make sure 
the test itself is not incorrect.

function call
expected output



Debugging Process



Understanding Your Code

When something goes wrong with your code, before rushing to change 
the code itself, you should make sure you understand conceptually
what your code does.

First- make sure you're solving the right problem! Re-read the problem 
prompt to check that you're doing the right task.

If you find yourself getting stuck, try rubber duck debugging. Explain 
what your code is supposed to do and what is going wrong out loud to 
an inanimate object, like a rubber duck. Sometimes, saying things out 
loud will help you realize what's wrong.



Debug with the Scientific Method

When you're trying to debug a tricky error, you should use a process 
similar to the scientific method. We'll reduce it down to five core steps:

1. Collect data

2. Make a hypothesis

3. Run an experiment

4. Observe the result

5. Repeat the process (if necessary)



Step 1: Collect Data

First, you need to collect data about what your code is currently doing.

You can already see the steps of your algorithm, but you can't see how the 
variables change their values while the program runs. Add print statements
at important junctures in the code to see what values the variables hold.

Each print statement should also include a brief string that gives context to 
what is being printed. For example:

print("Result pre-loop:", result)



Step 2 & 3: Make a Hypothesis; Experiment

At a certain point, you should see something in the values you are 
printing that is unexpected. At that point, make a hypothesis about 
why the variable is holding that value.

Once you have a hypothesis, test it by making an appropriate change in 
your code. For example, if you think the code never enters an if 
statement, add a print to the beginning of the conditional body to see if 
it gets printed.

Note: do not change things randomly, even if you get frustrated! Even if 
it makes you code work on one test, it might start failing another.



Step 4: Observe the Result

Once you've made the change, observe the result by checking the new 
output of your code.

Print statements are still helpful here. You can also use variable tables to see 
how a variable's behavior changes before vs. after the experiment, by writing 
out the value in a variable at each juncture of the code by hand.

For particularly tricky code, there are online visualization tools that let you 
see how your code behaves step-by-step. Here's one we recommend: 
pythontutor.com/visualize.html

http://pythontutor.com/visualize.html#mode=edit


Step 5: Repeat As Necessary

Finally, know that you may have to repeat the debugging process 
several times before you get the code to work.

This is normal; sometimes bugs are particularly hard to unravel, and 
sometimes there are multiple different bugs between your code and a 
correct solution.



Debugging is Hard

Finally, remember that debugging is hard! If you've spent more than 15 
minutes stuck on an error, more effort is not the solution. Get a friend 
or TA to help, or take a break and come back to the problem later. A 
fresh mindset will make finding your bug much easier.



Learning Goals

• Write test cases to determine whether code works properly

• Debug syntax and runtime errors by interpreting error messages

• Debug runtime and logical errors by using the scientific method

24


