
While Loops
15-110 – Friday 01/31

Learning Goals

• Use while loops when reading and writing algorithms to repeat
actions while a certain condition is met

• Identify start values, continuing conditions, and update actions for
loop control variables

• Translate algorithms from control flow charts to Python code

• Use nesting of statements to create complex control flow

2

Repeating Actions is Annoying

Let's write a program that prints out the numbers from 1 to 10. Up to now, that would look like:

print(1)

print(2)

print(3)

print(4)

print(5)

print(6)

print(7)

print(8)

print(9)

print(10)

3

Loops Repeat Actions Automatically

A loop is a control structure that lets us repeat actions so that we don't need
to write out similar code over and over again.

Loops are generally most powerful if we can find a pattern between the
repeated items. Noticing patterns lets us separate out the parts of the action
that are the same each time from the parts that are different.

In printing the numbers from 1 to 10, the part that is the same is the action
of printing. The part that is different is the number that is printed.

4

While Loops Repeat While a Condition is True

A while loop is a type of loop that keeps repeating only while a certain
condition is met. It uses the syntax:

while <boolean_expression>:
<loop_body>

The while loop checks the Boolean expression, and if it is True, it runs the
loop body. Then it checks the Boolean expression again, and if it is still True,
it runs the loop body again... etc.

When the loop finds that the Boolean expression is False, it skips the loop
body the same way an if statement would skip its body.

5

Conditions Must Eventually Become False

Unlike if statements, the condition in a while loop must eventually become False.
If this doesn't happen, the while loop will keep going forever!

The best way to make the condition change from True to False is to use a
variable as part of the Boolean expression. We can then change the variable inside
the while loop. For example, the variable i changes in the loop below.

i = 0
while i < 5:

print(i)
i = i + 1

print("done")

6

Infinite Loops Run Forever

What happens if we don't ensure that the condition eventually becomes False?
The while loop will just keep looping forever! This is called an infinite loop.

i = 1
while i > 0:

print(i)
i = i + 1

If you get stuck in an infinite loop, press the button that looks like a lightning bolt
above the interpreter to make the program stop. Then investigate your program to
figure out why the variable never makes the condition False. Printing out the
variable that changes can help pinpoint the issue.

7

While Loop Flow Chart

Unlike an if statement, a while
loop flow chart needs to include a
transition from the while loop's
body back to itself.

i = 0

while i < 5:

print(i)

i = i + 1

print("done")

i = 0

if i < 5

print(i)

i = i + 1

print("done")

True False

8

Use Loop Control Variables to Design Algorithms

Now that we know the basics of how loops work, we need to write
while loops that produce specific repeated actions.

First, we need to identify which parts of the repeated action must
change in each iteration. This changing part is the loop control
variable(s), which is updated in the loop body.

To use this loop variable, we'll need to give it a start value, an update
action, and a continuing condition. All three need to be coordinated
for the loop to work correctly.

9

Loop Control Variables - Example

In our print 1-to-10 example, we want to start the variable at 1, and
continue while the variable is less than or equal to 10. Set num = 1 at the
beginning of the loop and continue looping while num <= 10. The loop ends
when num is 11.

Each printed number is one larger from the previous, so the update should
set the variable to the next number (num = num + 1) in each iteration.

num = 1
while num <= 10:

print(num)
num = num + 1

10

Activity: Print Even Numbers

You do: your task is to print the even numbers from 2 to 100.

What is your loop control variable? What is its start value, continuing
condition, and update action?

Once you've determined what these values are, use them to write a
short program that does this task.

Submit your start/continue/update values and your program when
you're done.

11

Implement Algorithms by Changing Loop Body

Suppose we want to add the numbers
from 1 to 10.

We need to keep track of two different
numbers:

• the current number we're adding

• the current sum

Both numbers need to be updated inside
the loop body, but only one (the current
number) needs to be checked in the
condition.

result = 0

num = 1

while num <= 10:

result = result + num

num = num + 1

print(result)

Which is the loop control variable?

12

Tracing Loops

Sometimes it gets difficult to understand
what a program is doing when there are
loops. It can be helpful to manually trace
through the values in the variables at each
step of the code, including each iteration
of the loop.

result = 0
num = 1
while num <= 10:

result = result + num
num = num + 1

print(result)

step result num

pre-loop 0 1

iteration 1 1 2

iteration 2 3 3

iteration 3 6 4

iteration 4 10 5

iteration 5 15 6

iteration 6 21 7

iteration 7 28 8

iteration 8 36 9

iteration 9 45 10

iteration 10 55 11

post-loop 55 11
13

Update Order Matters

When updating multiple variables in a loop,
order matters. If we update num before we
update result, it changes the value held in
result.

result = 0
num = 1
while num <= 10:

num = num + 1
result = result + num

print(result)

Note: Python checks the condition only at the
start of the loop; it doesn't exit the loop as
soon as num becomes 11.

step result num

pre-loop 0 1

iteration 1 2 2

iteration 2 5 3

iteration 3 9 4

iteration 4 14 5

iteration 5 20 6

iteration 6 27 7

iteration 7 35 8

iteration 8 44 9

iteration 9 54 10

iteration 10 65 11

post-loop 65 11
14

Loop Control Variables – Advanced Example

It isn't always obvious how the start values,
continuing conditions, and update actions of a
loop control variable should work. Sometimes
you need to think through an example to make
it clear!

Example: how would you count the number of
digits in an integer?

Loop control variable: the number itself
Start value: the original value
Continuing condition: while number is not 0
Update action: integer-divide the number by 10

A separate variable can track the actual number
of digits counted.

num = 2020

digits = 0

while num > 0:

digits = digits + 1

num = num // 10

print(digits)

15

Loop Variables – Advanced Example

Another example: simulate a zombie
apocalypse. Every day, each zombie finds
and bites a human, turning them into a
zombie.

If we start with just one zombie, how long
does it take for the whole world (7.5 billion
people) to turn into zombies?

Loop control variable: # of zombies
Start value: 1
Continuing condition: while the number of
zombies is less than the population
Update action: double the number of
zombies every day

We use a separate variable to count the
number of days passed, as that's our output.

zombieCount = 1

population = 7.5 * 10**9

daysPassed = 0

while zombieCount < population:

daysPassed = daysPassed + 1

zombieCount = zombieCount * 2

print(daysPassed)

16

Nesting in While Loops

We showed previously how we can nest conditionals in
other conditionals to combine them together. We can do
the same thing with while loops!

For example, let's make ascii art. Write code to produce
the following printed string:

x-x-x
-o-o-
x-x-x
-o-o-
x-x-x

The loop will iterate over the rows that are printed. The
program decides whether to print the x line or the o line
based on the value of the loop variable.

If it's even (0, 2, and 4) print x; if it's odd (1 and 3) print o.

row = 0
while row < 5:

if row % 2 == 0:
print("x-x-x")

else:
print("-o-o-")

row = row + 1

17

Learning Goals

• Use while loops when reading and writing algorithms to repeat
actions while a certain condition is met

• Identify start values, continuing conditions, and update actions for
loop control variables

• Translate algorithms from control flow charts to Python code

• Use nesting of statements to create complex control flow

18

