While Loops

15-110 — Friday 01/31



* Use while loops when reading and writing algorithms to repeat
actions while a certain condition is met

* |dentify start values, continuing conditions, and update actions for
loop control variables

* Translate algorithms from control flow charts to Python code

* Use nesting of statements to create complex control flow



Repeating Actions Is Annoying

Let's write a program that prints out the numbers from 1 to 10. Up to now, that would look like:

print(1)
print(2)
print(3)
print(4)
print(5)
print(6)
print(7)
print(8)
print(9)
print(10)



A loop is a control structure that lets us repeat actions so that we don't need
to write out similar code over and over again.

Loops are generally most powerful if we can find a pattern between the
repeated items. Noticing patterns lets us separate out the parts of the action
that are the same each time from the parts that are different.

In printing the numbers from 1 to 10, the part that is the same is the action
of printing. The part that is different is the number that is printed.



A while loop is a type of loop that keeps repeating only while a certain
condition is met. It uses the syntax:

while <boolean expression>:
<loop body>

The while loop checks the Boolean expression, and if it is True, it runs the
loop body. Then it checks the Boolean expression again, and if it is still True,
it runs the loop body again... etc.

When the loop finds that the Boolean expression is False, it skips the loop
body the same way an if statement would skip its body.



Unlike if statements, the condition in a while loop must eventually become False.
If this doesn't happen, the while loop will keep going forever!

The best way to make the condition change from True to False is to use a
variable as part of the Boolean expression. We can then change the variable inside
the while loop. For example, the variable 1 changes in the loop below.

i=20

while i < 5:
print(i)
i=1+1

print("done")



What happens if we don't ensure that the condition eventually becomes False?
The while loop will just keep looping forever! This is called an infinite loop.

i=1

while 1 > ©:
print(i)
i=1+1

If you get stuck in an infinite loop, press the button that looks like a lightning bolt
above the interpreter to make the program stop. Then investigate your program to
figure out why the variable never makes the condition False. Printing out the

variable that changes can help pinpoint the issue.



While Loop Flow Chart

Unlike an if statement, a while
loop flow chart needs to include a
transition from the while loop's
body back to itself.

1 = 0 print(i)

while 1 < 5: l
print(i) .
i=1+1

print("done")

print("done")




Now that we know the basics of how loops work, we need to write
while loops that produce specific repeated actions.

First, we need to identify which parts of the repeated action must
change in each iteration. This changing part is the loop control
variable(s), which is updated in the loop body.

To use this loop variable, we'll need to give it a start value, an update
action, and a continuing condition. All three need to be coordinated

for the loop to work correctly.



In our print 1-to-10 example, we want to start the variable at 1, and
continue while the variable is less than or equal to 10. Set num = 1 at the
beginning of the loop and continue looping while num <= 10. The loop ends

when numis 11.

Each printed number is one larger from the previous, so the update should
set the variable to the next number (num = num + 1) in each iteration.

nhum = 1
while num <= 10:
print(num)

num = num + 1

10



You do: your task is to print the even numbers from 2 to 100.

What is your loop control variable? What is its start value, continuing
condition, and update action?

Once you've determined what these values are, use them to write a
short program that does this task.

Submit your start/continue/update values and your program when
you're done.



Suppose we want to add the numbers
from 1 to 10.

We need to keep track of two different
numbers:

* the current number we're adding
e the current sum

Both numbers need to be updated inside
the loop body, but only one (the current
number) needs to be checked in the
condition.

result = ©
num = 1
while num <= 10:
result = result + num
num = num + 1
print(result)

Which is the loop control variable?

12



Tracing Loops

Sometimes it gets difficult to understand
what a program is doing when there are
loops. It can be helpful to manually trace
through the values in the variables at each
step of the code, including each iteration
of the loop.

result = ©
hum = 1
while num <= 10:
result = result + num
num = num + 1
print(result)

pre-loop
iteration 1
iteration 2
iteration 3
iteration 4
iteration 5
iteration 6
iteration 7
iteration 8
iteration 9
iteration 10

post-loop

0
1
3
6
10
15
21
28
36
45

55
55

© 00 N o ur Ao W N =

S =
R B O

13



Update Order Matters

When updating multiple variables in a loop,

order matters. If we update num before we

update result, it changes the value held in
result.

result = ©
num = 1
while num <= 10:
num = num + 1
result = result + num
print(result)

Note: Python checks the condition only at the
start of the loop; it doesn't exit the loop as
soon as num becomes 11.

pre-loop
iteration 1
iteration 2
iteration 3
iteration 4
iteration 5
iteration 6
iteration 7
iteration 8
iteration 9
iteration 10

post-loop

o U1 N O

65
65

© 00 N o ur Ao W N =

S N
R B O

14



It isn't always obvious how the start values, num = 2020
continuing conditions, and update actions of a

loop control variable should work. Sometimes digits = ©

you need to think through an example to make while num > ©:

it clear! digits = digits + 1

Example: how would you count the number of num = num // 10

digits in an integer? : ..
print(digits)

Loop control variable: the number itself

Start value: the original value

Continuing condition: while numberis not 0
Update action: integer-divide the number by 10

A separate variable can track the actual number
of digits counted.

15



Another example: simulate a zombie
apocalypse. Every day, each zombie finds
and bites a human, turning them into a
zombie.

If we start with just one zombie, how long
does it take for the whole world (7.5 billion
people) to turn into zombies?

Loop control variable: # of zombies
Start value: 1

Continuing condition: while the number of
zombies is less than the population

Update action: double the number of
zombies every day

We use a separate variable to count the

number of days passed, as that's our output.

zombieCount =1
population = 7.5
daysPassed = 0
while zombieCount
daysPassed =
zombieCount =

print(daysPassed)

< population:

daysPassed + 1

zombieCount * 2

16



We showed previously how we can nest conditionals in row = 0
other conditionals to combine them together. We can do

the same thing with while loops! while row < 5:

if row % 2 ==

For example, let's make ascii art. Write code to produce print ("x-x-x"

the following printed string:

else:
X=-X-X print("-o0-0-")
-0-0- row = row + 1
X=-X-X
_O_O_
X-X-X

The loop will iterate over the rows that are printed. The
program decides whether to print the x line or the o line
based on the value of the loop variable.

If it's even (0, 2, and 4) print x; if it's odd (1 and 3) print o.

17



* Use while loops when reading and writing algorithms to repeat
actions while a certain condition is met

* |dentify start values, continuing conditions, and update actions for
loop control variables

* Translate algorithms from control flow charts to Python code

* Use nesting of statements to create complex control flow



