
Machine Learning –
Testing and Artificial Intelligence

15-110 – Monday 4/20

Learning Goals

• Identify how training data, validation data, and testing data is used
in machine learning

• Define the following keywords: artificial intelligence and heuristics

• Recognize how AIs reach goals by using a perception, reason, and
action cycle.

• Interpret game decision trees to see what an AI would decide to do.

2

Last Time

In the previous machine learning lecture, we discussed the core idea of
what a machine learning algorithm is, how training works, and went
over several examples of classic machine learning algorithms

This time, we'll talk more about what we can do with a model once
we've generated with it. This includes testing the model to see how
accurate it is, and how we can use models and algorithms to make
decisions.

3

Testing

4

Building Good Models

Last time, we talked about how we want our machine learning algorithm to
discover patterns that exist in a dataset, and incorporate those patterns into
the model it produces.

But we don't want the model to only work on the data we provided
originally. We want it to work on future data too.

When you build a model with a machine learning algorithm, you need to
separate your data out into three groups: training data, validation data, and
testing data. This will let you evaluate your model on 'new' data once it is
done.

5

Training Data Can Cause Overfitting

The training data is normally composed of the majority (maybe 70%) of the available
dataset. This data is run through the machine learning algorithm to produce the model.
The more training data there is, the more accurate the algorithm's model becomes.

This can go wrong if the algorithm over-optimizes the model. For example, it might identify
a pattern that only exists within the training data, not in the general population – the
pattern might just be noise. This is called overfitting. Overfitting can result in a model
performing very well on training data, but poorly on test data.

6

Validation Data Identifies Overfitting

To detect and remove parameters in the model that cause overfitting, you
can use validation data. This is a subset of the data (maybe 15%) that is not
used when training the model, but has been labeled with results.

During training, the algorithm will repeatedly evaluate the model it has
produced on the validation data, to see how accurate it is. This makes it
possible for the algorithm to try out different sets of features, to see which
parameters work best.

A common technique used in machine learning is cross-validation. One
dataset is used for both training and validation data; it is split up in different
ways while training, so that the model is not always evaluated on the same
data. This avoid overfitting to the validation data.

7

Testing Data Provides Final Results

Finally, when the algorithm thinks it's achieved an optimal model, the testing
data is used to determine how accurate that model actually is. This is a
portion of the data (maybe 15%) that was set aside at the beginning, which is
never used by the algorithm.

The model is run on the test data once (unlike validation data, which can be
evaluated multiple times). It scores how close the predicted results were to
the actual results. That score is the accuracy of the model.

You cannot train on your testing data if you want an accurate result!!!

8

Example: Bad Training Process

What happens if we train on our test data?

The algorithm will get the opportunity to
observe patterns in the test data. It will
optimize the model to include those
patterns.

When the model is tested, it will of course
be accurate, because the model was
optimized to notice the correct patterns.

But if we try to use the model on new,
unlabeled data later on, the patterns may
no longer be valid. We don't know for sure,
because all of our labeled data was used for
testing.

9

modeldata

validation

testing

updated
model

new data

???

training

Example: Good Training Process

First, we split the data into training,
validation, and testing sets.

We'll train on the training set, and
repeatedly test on the validation set.
This should remove some of the
overfitting from the training data.

When we're done, we'll test on the
test set once. That produces our
final result. It might be good, or it
might be bad; it depends on how
the model turned out.

However, the new data should have
about the same accuracy, since the
model never saw the data before.

10

modeldata

updated
model

new data

train

validate

test

training
validation

or

testing

or

ML Models Can Be Used To Make Decisions

Once we've created a model that has a high level of accuracy, what can we
do with it?

The model can be used to help computers make decisions based on
provided data. For example, if we train a model to identify tumors in brain
scans by providing lots of labeled brain scans, we can use that model to
identify potential tumors in new scans that haven't been looked at by human
experts yet.

This process of using machine learning to make decisions is also used to
support artificial intelligence in computers.

11

Artificial Intelligence

12

What is Artificial Intelligence?

The term artificial intelligence (AI) is used to describe computers that are
'intelligent' in the same way that humans are.

However, it's extremely hard to build a machine with general intelligence-
that is, a machine that can do everything a human can do. We're still far
away from this goal, as it includes many difficult tasks (image perception,
language recognition, reasoning, planning, and more).

Most modern AIs are specialized; they do one specific task, and they do it
very well.

13

Examples of AIs

We've built AIs that can play
games, run robots, and play
Jeopardy.

AI is also used to translate
text, predict what you'll type,
and answer questions on
websites.

14

Goals, Perception, Reason, and Action

Each AI we build has a specific goal, the thing it is trying to do. The AI
attempts to reach that goal by cycling through three steps: perceive
information, reason about it, then act on it.

This is similar to how human brains work! We constantly take in information
from our senses, process it, and decide what to do (consciously or
unconsciously) based on that 'data'.

AIs can perceive information through user input and through sensors, which
collect data from the real world. They can then produce output in the
computer or use an actuator to make a movement in the real world.

15

Example: IBM Watson

The IBM Watson was designed to play (and win!)
the game Jeopardy. Its goal was to answer
Jeopardy problems with a question. How did it
work?

Watson perceived the questions by receiving
them as text, then breaking them down into
keywords using natural language processing.

It used that information to search documents in
its database, looking for the most relevant
information. With that information, Watson used
reasoning to determine how confident it was
that the answer it found was correct.

If Watson decided to answer, it would act by
organizing the information into a sentence, then
pressing the buzzer with a robotic 'finger'.

16

Search in Artificial Intelligence

In Watson (and many other artificial intelligence applications), the key to
being able to perceive and act quickly lies in fast search algorithms.

Being able to search quickly makes it possible for an AI to look through
hundreds of thousands of possible actions to find which action will work
best. This is what makes it possible for Watson to find a correct answer so
quickly, or for a self-driving car to identify when it needs to stop
immediately.

Good algorithm design can help speed up search, but AIs also use heuristics
to search as fast as possible.

17

Heuristics Provide Approximate Answers

A heuristic is a technique used by an algorithm to find
a good-enough solution to a problem. Heuristics are
typically used because they're faster than optimal
algorithms.

For example, we can create a search heuristic for a
graph search that ranks possible next steps. The AI can
then try the highest-ranked next step, instead of
looking at all possible options.

Think back to the Travelling Salesperson problem. A
heuristic for this problem would be to rank paths based
on their length. The algorithm can then always choose
the next city to visit by trying the shorter paths first.

Heuristics are fast, but they also have drawbacks. If we
use the Travelling Salesperson heuristic, we lose
optimality; the path we find will be good, but it might
not be the best possible path.

18

Game Trees

19

Game Trees Use Heuristics To Choose Moves

AIs also use heuristics in game trees, which are used to decide what
move a game AI should make out of all possible options.

A game tree is a tree where the nodes are game states, and the edges
are actions made by the AI or the opposing player.

For example, the game tree for Tic-Tac-Toe looks like this...

20

21

Full board here: https://xkcd.com/832/

https://xkcd.com/832/

Reading a Game Tree

The root of a game tree is the current state of the game. That can be the
start state (as in the previous example), or it can be a game state after some
moves have been made.

The leaves of the tree are the final states of the game, when the AI wins,
loses, or ties.

The edges between the root and the first set of children are the possible
moves the AI can make. Then the next set of edges (from the first level to the
second) is the moves the opponent can make. These alternate all the way
down the tree.

22

Game Trees are Big

How many possible outcomes are there in a game of Tic-Tac-Toe?

Let's assume that all nine positions are filled. That means the depth of the
tree is 9 (there are nine moves, so the root + 9 levels). There are 9 options
for the first move, 8 for the second, 7 for the third, etc... that's 9!, which is
362,880.

This number is a bit larger than the real set of possibilities (some games end
early), but it's a good approximation.

How can the AI choose the best move to make out of all of these options?

23

Minimax Optimizes for Score

The minimax
algorithm can be used
to maximize the final
'score' of a game for
an AI.

In Tic-Tac-Toe, we'll
say that the score is 1
if the computer wins,
0 if there's a tie, and
-1 if the human wins.

24

X O

X X O

O

X X O

X X O

O

X O

X X O

X O

X O

X X O

O X

O X O

X X O

O X

X O

X X O

O O X

X O

X X O

X O O

O X O

X X O

X O

X X O

X X O

O O

X X O

X X O

O O

-1 -1

X X O

X X O

O O X

1
O X O

X X O

X O X

0
O X O

X X O

X O X

X X O

X X O

O O X

10

Scoring Game States

How do we score the
intermediate states? Look
at the scores of the
state's children.

If the next move is made
by the AI, take the
maximum of the scores.

If it's made by the
opponent, take the
minimum.

Start from the leaves, and
build up to the root.

25

X O

X X O

O

X X O

X X O

O

X O

X X O

X O

X O

X X O

O X

O X O

X X O

O X

X O

X X O

O O X

X O

X X O

X O O

O X O

X X O

X O

X X O

X X O

O O

X X O

X X O

O O

-1 -1

X X O

X X O

O O X

1
O X O

X X O

X O X

0
O X O

X X O

X O X

X X O

X X O

O O X

10

1

AI max

User min

AI max

0 0 1

-1 -1 0

0

Minimax Algorithm

Need to use a general tree- "children" instead of "left" and "right"
def minimax(tree, isMyTurn):

if len(tree["children"]) == 0:
return score(tree["value"]) # base case: score of the leaf

else:
results = [] # recursive case: get scores of all children
for child in tree["children"]:

switch whose turn it will be for the children
results.append(minimax(child, not isMyTurn))

if isMyTurn == True:
return max(results) # my turn? maximize!

else:
return min(results) # opponent's turn? minimize!

def score(state):
??? # this depends on your goal

26

Heuristics in Minimax

Tic-Tac-Toe is a simple game, so its game tree is small (for a computer).

More complex games have much larger trees. For example, in Chess, there's
an average of 35 possible next moves per turn, with an average of 100 turns
per game. That means there are 35100 possible states to check – way too
many!!

Instead, the computer can move down a set number of levels in the game
tree, then use a heuristic to score all the states at that level. Then it can use
minimax to find the next-best move based on the heuristic scores.

27

Designing Heuristics

How could we design a good heuristic for Chess?

Use information about the state of the board. How many pieces does
the computer have left? What about the user?

How valuable are each of those pieces? The queen should get a higher
rating than a pawn.

And how safe is the king? Can we write an algorithm to measure how
protected the king is on the board?

28

Game AIs

Algorithms like minimax and the use
of heuristics have made it possible for
AIs to beat world champions at games
like Chess, Go, and Poker.

Why did it take 9 years to get from
Chess to Go? Go has many more next
moves than Chess, so it needed more
advanced algorithms (including Monte
Carlo randomization and machine
learning!).

These AIs will keep improving as
computers grow more powerful and
we design better algorithms.

29

DeepBlue beat chess grandmaster Garry Kasparov in 1997

AlphaGo beat 9-dan ranked Go champion Lee Sedol in 2016

Learning Goals

• Identify how training data, validation data, and testing data is used
in machine learning

• Define the following keywords: artificial intelligence and heuristics

• Recognize how AIs reach goals by using a perception, reason, and
action cycle.

• Interpret game decision trees to see what an AI would decide to do.

30

