
Simulation –
Model, View, Controller

15-110 – Friday 04/10

Learning Goals

• Represent the state of a system in a model by identifying components
and rules

• Visualize a model using graphics

• Update a model over time based on rules

• Update a model based on events (mouse-based and keyboard-based)

2

Simulations and Models

Simulations are Imitations of Real Life

A simulation is an automated
imitation of a real-world event.

By running simulations on
different starting inputs, and by
interacting with them while they
run, we can test how the event
will change under different
circumstances.

Simulation and COVID-19

Simulation has been used in the COVID-19
pandemic to demonstrate what 'flattening
the curve' means, and how different policies
will result in different infection and fatality
rates.

This has a distinct effect on the choices
governments make about which policies to
implement.

An early simulation by The Washington Post
helped many people understand the need
for social distancing:

https://www.washingtonpost.com/graphics/
2020/world/corona-simulator/

5

https://www.washingtonpost.com/graphics/2020/world/corona-simulator/

Examples of Simulations

Simulation is used across many different fields, including training
people, testing designs, and predicting results.

Simulations vs. Real-world Experiments

Simulations share a lot in common with real world experiments. Major
differences include:

• Experiments run in real time; simulations can be sped up, slowed
down, or paused.

• Experiments can be expensive; simulations are fairly cheap.

• Experiments include all possible factors; simulations only include
factors we program in.

Example Simulations

You can explore simulations across a variety of fields on the site
NetLogo.

• Ant colony movements

• Flocking behavior

• Gravitational forces

• Climate change

• Fire spreading

• Rumor mills

http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Ants.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Flocking.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Chemistry%20&%20Physics/Mechanics/Unverified/N-Bodies.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Earth%20Science/Climate%20Change.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Earth%20Science/Fire.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Social%20Science/Rumor%20Mill.nlogo

Simulations Run on Models

How do we program a simulation? You need to design a good model,
which will mimic the part of the real world you want to study. The
simulation represents how the system represented by the model
changes over time, or how it changes based on events.

Models are composed of two parts:
• The components of the system (information that describes the world at an

exact moment).

• The rules of the system (how the components change as time passes).

Components are like variables, and rules are like functions!

Example Model

Problem: how will increasing the price of bread over the course of a
few months affect how many people buy bread?

Model Components: current price; delta change in price; overall
consumer count; distribution of consumer incomes

Model Rules: supply/demand relationship for bread; relationship
between income and max amount willing to pay

Activity: Design a Model

Problem: say we want to track how many birds are in a local area over
time.

What are the components of this model? What are the rules?

Coding a Simulation

Simulation Parts in Code

We'll implement simulations in this class graphically, like in NetLogo.
We'll use Tkinter again to do this!

Our simulation code will be composed of three parts:
• Making the initial components, by storing the starting component values in a

shared data structure

• Implementing time and event controllers, which run the model's rules to
update the components when called

• Graphically drawing a view, which will repeatedly display the current state of
the components

Making the Components

We'll represent our components in code in a dictionary called data. The
keys will take the place of variable names, while the value will be the actual
component values.

For example, to store the price of bread, we could set
data["price"] = 5.00.

By storing all of the components in one structure, we can pass the same
structure around to all the functions we write, using aliasing. This will let us
update data in one function, then display the updated components in
another.

Displaying the Model

To display the whole model, we'll use Tkinter to draw graphics that
represent the components visually. By referring to values in data in the
view function, we can make graphics based on pre-defined
components.

We'll erase and re-draw the graphics window every time the rules of
the simulation run. By changing the components a little bit at a time,
this makes the display appear to update smoothly.

Running the Rules

We can run the simulation rules in two ways: either over a period of
time, or when events happen. We'll address the time controller first,
then the event controller later.

The time controller will create a time loop and call a function (we'll call
it runRules) within that time loop at equal time intervals. By calling
this function continuously, we can simulate time passing.

In the actual rules function, we'll update the values in data, to change
them over time.

Simulation Functions

To implement the three simulation parts, we'll use a new simulation
framework that you can find linked on the course website. In this
framework, you can update three functions that correspond to the
three parts:

• makeModel(data)makes the original components. data is the model
dictionary

• runRules(data, call) runs the rules to update data. The integer call
represents the number of times runRules has been called

• makeView(data, canvas) displays the model. canvas is a Tkinter canvas

Simple Example – Color-Changing Ball

Let's start with a simple simulation. Say we want to draw a circle and have
the color of the circle change over time.

The model should hold any component values that might change. In this
case, that's the color of the circle.

The rules should describe how the model changes over time. In this case, we
change the color every call to runRules().

The view should draw a circle in the middle of the window, and set its color
based on the color in the model.

Simple Example Code

def makeModel(data):
put variables in data here
data["color"] = "red"

def makeView(data, canvas):
(200, 200) is center point
canvas.create_oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,

fill=data["color"])
def runRules(data, call):

if data["color"] == "red":
data["color"] = "green" # switch from red to green

elif data["color"] == "green":
data["color"] = "blue" # switch from green to blue

else:
data["color"] = "red" # switch from blue to red

Interaction Events

The second kind of rules are ones that run when an event occurs.

An event represents a single user interaction with the computer system.
Events come in many forms: keyboard presses, mouse clicks, touchpad
gestures, touchscreen presses, button presses, etc...

When you trigger an event on your computer, a signal is sent from the
computer hardware to any programs that are currently running. That signal
has information about the type of the event (key press vs. mouse click), plus
any additional information that might be useful (which key was pressed).

Event Loop

Similar to the time loop that we used before, we'll need to run an
event loop to capture the signals that the computer sends out.
However, events occur irregularly, unlike regularly-timed rules.

To implement this event loop, we'll have our simulation system
constantly listen for events. When an event occurs, the simulation
system will catch it, then send it on to a function we write specifically
to handle that kind of event. This is done with a special kind of Tkinter
function called bind, and is provided in the starter code.

Tkinter Events

With Tkinter, we can listen for and bind functions to lots of different
event types.

We'll care about just two: <Key>, a keyboard press, and <Button-1>,
a mouse click.

There are lots of other Tkinter events we can implement if we want
them:

https://effbot.org/tkinterbook/tkinter-events-and-bindings.htm#events

https://effbot.org/tkinterbook/tkinter-events-and-bindings.htm#events

Event Handlers

To deal with Key and Mouse events, we'll introduce two new functions to our
simulation framework:

• keyPressed(data, event)
• mousePressed(data, event)

Each of these takes data (our components data structure), and event, an
event object, which contains the information about the event.

These work like runRules(data, call) – we update data, then refresh
the view immediately afterwards. This lets us make changes to the model.

keyPressed Events

In keyPressed, the event parameter contains two values we can use:

• event.char is a string containing the character pressed

• event.keysym is a string holding the 'name' of the character, for
characters we can't type (e.g., Enter or Backspace)

If we want to draw the last-pressed character in the middle of the
screen, for example, we would need to store that character:

def keyPressed(data, event):
data["text"] = event.char

Example Key Event

def makeModel(data):
data["color"] = "red"
data["tmp"] = ""

def makeView(data, canvas):
canvas.create_oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,

fill=data["color"])

def keyPressed(data, event):
build up a color string one char at a time until user presses Return
if event.keysym != "Return":

data["tmp"] += event.char
else:

move the color into data["color"]
data["color"] = data["tmp"]
data["tmp"] = ""

25

mousePressed Events

In mousePressed, the event parameter holds pixel location where
the user clicked on the canvas.

• event.x is the x location

• event.y is the y location

If we want to move a circle around the canvas to be centered wherever
you click, we'd need to store the center location:

def mousePressed(data, event):
data["cx"] = event.x
data["cy"] = event.y

Example Mouse Event
def makeModel(data):

data["cx"] = 200
data["cy"] = 200
data["size"] = 50
data["colors"] = ["red", "orange", "yellow", "green", "blue", "purple"]
data["colorIndex"] = 0

def makeView(data, canvas):
i = data["colorIndex"]
color = data["colors"][i]
canvas.create_oval(data["cx"] - data["size"], data["cy"] - data["size"],

data["cx"] + data["size"], data["cy"] + data["size"],
fill=color)

def mousePressed(data, event):
Check if the distance between clicked point and center of circle is in circle
if ((event.x - data["cx"])**2 + (event.y - data["cy"])**2)**0.5 <= data["size"]:

data["colorIndex"] = (data["colorIndex"] + 1) % len(data["colors"])

27

Supporting Functions – Time Loop

The starter code we provide helps the simulation run smoothly. You don't need to
understand this code, but here's some more info if you're interested.

The time loop works by using the built-in function canvas.after. This function
lets us repeatedly call the same function (like recursion), but pauses before making
the call. That lets us recurse/loop infinitely while not freezing the window.

The function runSimulation(width, height, timeRate) actually sets up
this time loop. You can speed up/slow down the simulation by changing timeRate.

You can also change the window size by changing width and height in those
parameters.

28

Learning Goals

• Represent the state of a system in a model by identifying components
and rules

• Visualize a model using graphics

• Update a model over time based on rules

• Update a model based on events (mouse-based and keyboard-based)

29

