
Levels of Concurrency
15-110 – Wednesday 3/25

Learning Goals

• Define Moore's Law and explain its effect on computing

• Define and understand the difference between the following types of
concurrency: circuit-level concurrency, multitasking,
multiprocessing, and distributed computing

• Create concurrency trees to increase the efficiency of complex
operations by executing sub-operations at the same time

2

Unit Introduction

3

Scaling Up Computing

In the unit on Data Structures and Efficiency, we determined that
certain algorithms may take a long time to run on large pieces of data.

In this unit, we'll address the following questions:

• How is it possible for complex algorithms (like Google search) to run
quickly?

• How can we write algorithms that use communication with other
computers, instead of running individually?

4

Moore's Law: Computers Keep Getting Faster

You've probably noticed that the
computer you use now is much
faster than the computer you
used ten years ago. That's
because of a business principle
known as Moore's Law.

Moore's Law effectively states
that the power of a computer
doubles every two years. If you
buy a computer designed in 2020,
it should be twice as powerful as
a computer made in 2018.

Note: Moore's Law is an
observation, not an actual law of
nature. But how does it work?

5

Transistors Provide Electronic Switching

Recall the lecture on gates and circuits. How does the computer send
data to different circuits for different tasks?

This is accomplished using a transistor, a small device that makes it
possible to switch electric signals. In other words, adding a transistor to
a circuit gives the computer a choice between two different actions.

When we increase the number of transistors in a computer,
we increase the number of things it can do. That also makes
the computer faster.

6

Moore's Law: Double the Transistors

A more precise statement of Moore's Law is that the number of transistors
on a computer chip will double every two years. This provides the increase in
power, and the speed-up.

Originally, engineers were able to double the number of transistors by
making them smaller every year, to fit twice as many transistors on a single
computer chip. But around 2010, it became physically impossible to make
the transistors smaller (due to electronic leakage).

Now engineers attempt to follow Moore's Law by using parallelization
instead. In other words, your computer may contain multiple chips, and may
run more than one computer process at the same time.

7

Levels of Concurrency

8

Concurrency and Parallelization

In general, when we refer to the term concurrency, we mean that
multiple programs are running at exactly the same time.

We will also refer to parallelization as the process of taking an
algorithm and breaking it up so that it can run across multiple
concurrent processes at the same time.

In this lecture, we'll discuss four different levels at which concurrency
occurs. Next time, we'll discuss broad approaches for implementing
parallel algorithms.

9

Four Levels of Concurrency

The four levels of concurrency are:

Circuit-Level Concurrency: concurrent actions on a single CPU

Multitasking: seemingly-concurrent programs on a single CPU

Multiprocessing: concurrent programs across multiple CPUs

Distributed Computing: concurrent programs across multiple computers

10

A CPU Manages Computation

A CPU (or Central Processing Unit) is
the part of a computer's hardware
that actually runs the actions taken
by a program. It's composed of a
large number of circuits.

The CPU is made up of several parts.
It has a control unit, which maps the
individual steps taken by a program
to specific circuits. It also has many
registers, which store information
and act as temporary memory.

11

CPUs Have Many Logic Units

For our purpose, the most
interesting part is the logic units.
These are a set of circuits that can
perform basic arithmetic
operations (like addition or
multiplication).

Importantly, the CPU has many
duplicates of these- it might have
hundreds of logic units that all
perform addition.

12

1: Circuit-Level Concurrency

The first level of concurrency happens within a single CPU, or core.
Because the CPU has many arithmetic units, it can break up complex
mathematical operations so that subparts of the operation run on
separate logic units at the same time.

For example, if a computer needs to compute (2 + 3) * (5 + 7), it can
send (2 + 3) and (5 + 7) to two different addition units simultaneously.
Once it gets the results, it can then send them to the multiplication
unit. This only takes two time steps, instead of three.

13

Concurrency Trees

A concurrency tree is a tree that shows
how a complex operation can be broken
down into the fewest possible time steps.

Actions which occur simultaneously are
written as nodes at the same level of the
tree.

The total number of steps is the number of
non-leaf nodes in the tree. This example
tree has three total steps.

The number of time steps is the number of
levels in the tree. This example tree has
two time steps.

14

2+3

2 3

5+7

5 7

(2+3) * (5+7)

Example Concurrency Tree

For example, let's make a concurrency tree for

(a*b + c*d2) * (g + f*h)

In the first time step, we can compute a*b,
d**2, and f*h.

The next time step contains the operations that
required those computations to be done
already – c*(d**2) and g + f*h.

In general, the operations at each level could
not be done any earlier.

This tree has seven total steps and four time
steps.

15

(a*b + c*(d**2)) * (g + f*h)

a*b + c*(d**2)

g + f*h

a*b

c*(d**2)

a b

d**2

c d g f h

f*h

2

Activity: Count Equation Steps

Consider the following equation:

((a*b + 1) - a) + ((c**2) * (d*e + f))

How many total steps does it take to compute this equation?

How many time steps does it take to compute this equation?

Hint: If you aren't sure, try drawing a concurrency tree!

When you're ready, enter your answer on Piazza.

16

2: Multitasking

The second level of concurrency is multitasking.

This level is very different from the others, in that it doesn't actually
run multiple actions at the same time. Instead, it creates the
appearance of concurrent actions.

17

CPU Schedulers Arrange Programs

Multitasking is accomplished by a part of the CPU called a scheduler.
This is a component that decides which program action will happen
next in the CPU.

When your computer is running multiple applications at the same time
– like your browser, and a word editor, and Pyzo – the scheduler
decides which program gets to use the CPU at any given point.

18

Multitasking with a Scheduler

When multiple applications are running at the same time, the scheduler can make them
seem to run at the same time by breaking each application's process into steps, then
alternating between the steps rapidly.

If this alternation happens quickly enough, it looks like true concurrency to the user, even
though only one process is running at any given point in time.

19
time

Process 1:

Process 2:

run run run

run run

step1 step 2 step3

step1 step 2

Schedulers Can Choose Any Order

When two (or more) processes are
running at the same time, the steps don't
need to alternate perfectly.

The scheduler may choose to run several
steps of one process, then switch to one
step of another, then run all the steps of
a third. It might even choose to put a
process on hold for a long time, if it isn't
a priority.

In general, the scheduler chooses which
order to run the steps in to maximize
throughput for the user. Throughput is
the amount of work a computer can do
during a set length of time.

20

time

Process 1:

Process 2:

run run

run

run run

step1 step 2

step1

step1 step 2

Process 3:

Your Computer Multitasks

Your computer uses multitasking to
manage all of the applications you
run, as well as the background
processes needed to make your
operating system work.

You can see all the applications your
computer's scheduler is managing by
going to your process manager (Task
Manager on Windows, Activity
Monitor on Macs). You can even see
how much time each process gets on
the CPU!

21

3: Multiprocessing

The third level of concurrency, multiprocessing, can run multiple
applications at the exact same time on a single computer.

To make this possible, we put multiple CPUs inside a single computer,
then run different applications on different CPUs at the same time.

By multiplying the number of actions we can run at a point in time, we
multiply the speed of the computer.

22

Multiple Processor vs. Multi-Core

Technically there are two ways to put
several CPUs into a single machine.

The first is to insert more than one CPU
chip into the computer. This is called
multiple processors.

The second is to put multiple 'cores' on a
single CPU. Each core can manage its own
set of actions. This is called multi-core.

There are slight differences between these
two approaches, in terms of how quickly
the CPUs can work together and how they
access memory. For this class, we'll treat
them as the same.

23

Multiple
Processors

Multi-Core

Scheduling with Multiprocessing

When we use multiple cores and multiprocessing, we can run our
applications simultaneously by assigning them to different cores.

Each core has its own scheduler, so they can work independently.

24time

Process 1:
[on Core 1]

Process 2:
[on Core 2]

run run run

run run

step1 step 2 step3

step1 step 2

Simplified Scheduling

Here's a simplified visualization of scheduling with multiprocessing,
where we condense all of the steps of an application into one block.

Microsoft Word

Firefox

Pyzo

Zoom

Core 1

Core 2

Core 3

Core 4

Multiprocessing and Multitasking

The number of cores we have on a single computer is usually still
limited. You can check how many cores your own computer has by
going to your settings, checking 'About Computer', and looking up the
stats of the processor your computer uses.

Most modern computers use somewhere between 2-8 cores. If you run
more than 2-8 applications at the same time, the cores use
multitasking to make them appear to run concurrently.

26

Scheduling with Multiprocessing and Multitasking

Here's a simplified view of what scheduling might look like when we
combine multiprocessing with multitasking.

Microsoft Word

Firefox

Pyzo

Zoom

Core 1

Core 2

Core 3

Core 4

Microsoft Word Microsoft WordPPT PPT PPT

Firefox Firefox Firefox Firefox

4: Distributed Computing

The final level of concurrency, distributed computing, goes beyond
using a single machine.

If we have access to several computers (each with its own set of CPUs),
we can network them together and use them all to perform advanced
computations, by assigning different subtasks to different computers.

By multiplying the number of computers that are working on a single
problem, we can multiply the speed of a difficult computation.

28

Scheduling with Distributed Computing

Each computer in the network can take a single task, break it up into further
subtasks, and assign those subtasks to its cores. This makes it possible for us
to attempt to solve problems which would take a long time to solve on a
single processor.

29

Task 1

Task 2

Task 3

Task 4

Core 1

Core 2

Core 3

Core 4

Subtask 1-1

Subtask 1-2

Subtask 1-3

Subtask 1-4

Core 1

Core 2

Core 3

Core 4

Subtask 2-1

Subtask 2-2

Subtask 2-3

Subtask 2-4

Core 1

Core 2

Core 3

Core 4

Subtask 3-1

Subtask 3-2

Subtask 3-3

Subtask 3-4

Core 1

Core 2

Core 3

Core 4

Subtask 4-1

Subtask 4-2

Subtask 4-3

Subtask 4-4

Companies Use Distributed Computing

Distributed computing is used by big
tech companies (like Google and
Amazon) both to manage thousands
of customers simultaneously, and to
process complex actions quickly.

This is where the term 'server farm'
comes from- these companies will
construct large buildings full of
thousands of computers which are
all networked together and ready to
process information.

30

Distributed Computing Must Be Fault Tolerant

When using distributed computing, it's very important that algorithms are
designed to be fault tolerant.

The probability that a computer randomly crashes while running a program
is low (maybe 1 in 10,000). But server farms regularly run far more than
10,000 computers at the same time.

Algorithms that run on distributed systems must be designed to have checks
in place to make sure that no work is left unfinished. Typically, memory is
also backed up on multiple machines, to make sure no data is lost if a single
machine goes down.

31

Learning Goals

• Define Moore's Law and explain its effect on computing

• Define and understand the difference between the following types of
concurrency: circuit-level concurrency, multitasking,
multiprocessing, and distributed computing

• Create concurrency trees to increase the efficiency of complex
operations by executing sub-operations at the same time

32

