
How Python Works
15-110 – Friday 01/17

Learning Objectives

• Recognize the steps of the process that converts python code into
instructions a computer can execute

• Understand how and when different types of errors occur in python
code

2

The Pyzo IDE Has an Editor and an Interpreter

We mostly use two parts of the Pyzo
IDE while writing code- the editor
and the interpreter.

The editor is just a normal text
editor. When we save text, it is saved
to a .py file, but this is still just
normal text.

The interpreter does the actual work
of converting our Python text into
instructions the computer can run.
This happens when you click
'Run File as Script'.

editor interpreter

3

Sidebar: How Files Work

Your computer uses file and folders to organize data content locally (on the
hardware).

A file is a single piece of content – a document, or a picture, or a song, or
Python code.

A folder is a structure that can hold 0+ files, as well as other folders. Folders
can be nested for further organization. Folders let you manage files directly.

You'll create many files (mostly .pdf and .py files) for this class. We
recommend that you make a 15-110 folder to hold all your work.

4

The Interpreter Turns Python Code to Bytecode

Python code is abstracted – it's written at a level humans can understand.
But this is too high-level for a computer to follow instructions directly.

A computer does know how to follow a small set of instructions that are built
into its hardware. These instructions are called bytecode.

The job of the interpreter is to translate your python code into bytecode,
which the computer can then run.

To do this translation, the interpreter tokenizes, parses, and translates the
code.

5

Tokenizing Splits Text into Tokens

First, the interpreter takes a big set
of text (the Python program) and
breaks it into tokens.

It identifies natural break points
based on the grammar of the
language. For example, in the code
to the right, the tokens produced
would be:

x, =, 5, newline, number, =, x, -, 2

x = 5

number = x-2

6

Parsing Groups Tokens by Task

Next, the interpreter parses the
sequence of tokens into a structured
format called a parse tree.

This tree groups together tokens that
are part of the same action.

For example, given the tokens to the
right, the interpreter would
recognize that = is an action taken
with x as the target variable and 5 as
the value.

x, =, 5, newline,

number, =, x, -, 2

7

Tokenizing and Parsing Errors are Syntax Errors

The first two steps – tokenizing and parsing – are based on the Python
language's syntax. Syntax is a set of rules for how code instructions
should be written.

If the interpreter runs into an error while tokenizing or parsing, it calls
that a syntax error. You get a syntax error when the code you provide
does not follow the rules of the Python language's syntax.

8

Examples of Syntax Errors

Most syntax errors are called SyntaxErrors, which make them easy to spot. For
example:

x = @ # @ is not a valid token

4 + 5 = x # the parser stops because it doesn't follow the
rules

There are two special types of syntax errors: IndentationError and incomplete error.

x = 4 # IndentationError: whitespace has meaning

print(4 + 5 # Incomplete Error: always close parentheses

9

Bytecode is a Simple Language

Once code has been parsed, the interpreter can translate it into a language,
bytecode. Bytecode is composed of a small list of instructions the computer
knows how to perform. You can find a full list here:
docs.python.org/3/library/dis.html#python-bytecode-instructions

Bytecode instructions are very simple and structured. Each line has a single
instruction – a command name, and (sometimes) a number.

Because the language is so simple, it relies on additional components to run:
tables of values, which form the program's memory, and a stack, which
keeps track of the program's state as it runs.

10

https://docs.python.org/3/library/dis.html#python-bytecode-instructions

Example: Value Tables and the Stack

For example, consider the following
program:

x = 5
y = 7
z = x + y

The computer stores of all the values
used by the program in two tables: a
Literal Value table and a Variable table.

It also uses a Stack, where it stores
information it needs to execute
commands. The stack is like your
working memory.

Literal Table

id value

0 5

1 7

Variable Table

id name value

0 x

1 y

2 z

Stack

11

Example: Bytecode Instructions

The instructions the computer will use for our example are as follows.

LOAD_CONST and LOAD_NAME are used to move information from a table
onto the stack.

STORE_NAME is used to move information from the stack into the variable
table.

BINARY_ADD will add together the top two values on the stack and replace
them with the result. BINARY_SUBTRACT does the same, but with
subtraction.

12

Example: Bytecode Execution

Put all of this together, and the
program below is translated to
the bytecode on the right.

x = 5

y = 7

z = x + y

Let's walk through what the
bytecode does.

LOAD_CONST 0

STORE_NAME 0

LOAD_CONST 1

STORE_NAME 1

LOAD_NAME 0

LOAD_NAME 1

BINARY_ADD

STORE_NAME 2

Literal Table

id value

0 5

1 7

Variable Table

id name value

0 x

1 y

2 z

Stack

13

Bytecode-Running Errors are Runtime Errors

If an error occurs as bytecode is being executed, it's called a runtime
error. That's because the error occurs as the code is running!

Runtime errors have many different names in Python. Each name says
something about what kind of error occurred, so reading the name and
text can give you additional information about what went wrong.

14

Examples of Runtime Errors

print(Hello) # NameError: used a missing variable

print("2" + 3) # TypeError: illegal operation on types

x = 5 / 0 # ZeroDivisionError: can't divide by zero

We'll see more types of runtime errors as we learn more Python syntax.

15

Other Errors are Logical Errors

If we manage to translate Python code into bytecode and it runs
completely, does that mean it's correct?

Not necessarily! Logical errors can occur if code runs but produces a
result that was not what the user intended. The computer can't catch
logical errors, because the computer doesn't know what we intend to
do.

Logical errors will be the hardest to find and fix. We'll talk more about
addressing them later.

16

Activity: Step Through Bytecode

Task: we've translated a simple program
into bytecode and set up its initial tables.

Walk through the bytecode to determine
what values are held in variables a, b,
and c at the end of the code.

Submit your answer on Piazza when
you're done.

Note: subtract the higher element on the
stack from the lower element.

LOAD_CONST 0

STORE_NAME 0

LOAD_NAME 0

LOAD_CONST 1

BINARY_SUBTRACT

STORE_NAME 1

LOAD_NAME 0

LOAD_NAME 1

BINARY_ADD

STORE_NAME 2

Literal Table

id value

0 6

1 2

Variable Table

id name value

0 a

1 b

2 c

Stack

17

Learning Objectives

• Recognize the steps of the process that converts python code into
instructions a computer can execute

• Understand how and when different types of errors occur in python
code

18

