ittt
OIS

UNIT 14C

The Limits of Computing:
Non-computable Functions

(and the Future of Computing)

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Problem Classifications

Tractable Problems

— Problems that have reasonable, polynomial-
time solutions

Intractable Problems

— Problems that may have no reasonable,
polynomial-time solutions

Noncomputable Problems

— Problems that have no algorithms at all to
solve them

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

5/5/18

Program Termination

Can we determine if a program will terminate
given a valid input?
Example:
def mysteryl (x):
while (x !'= 1):

X =x - 2

— Does this algorithm terminate when x = 15?
— Does this algorithm terminate when x = 110?

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Another Example

def mystery2 (x):
while (x '= 1):
if x % 2 ==
x=x// 2
else:
x=3* x4+ 1

— Does this algorithm terminate when x = 15?
— Does this algorithm terminate when x = 1107?
— Does this algorithm terminate for any positive x?

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

5/5/18

The Halting Problem

* Does a universal program HALT exist that can

take any program P and any input | for
program P and determine if P terminates/

halts when run with input I?

* Alan Turing showed that such a single,
universal program HALT cannot exist.

— This is known as the Halting Problem.

15110 Principles of Computing, Carnegie 5

Mellon University - CORTINA

Proof by Contradiction

* Assume a program HALT exists that requires a program
P and aninput I.

— HALT determines if program P will halt when P is
executed using input I. No assumptions are made on
how it does this. Anything is possible.

HALT outputs YES

if P halts when run
with input |

HALT outputs NO

if P does not halt
when run with input |

P

— We will show that HALT cannot exist by showing that if it
did exist we would get a logical contradiction.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

5/5/18

Can a program have as its input
a program?

e A compileris a program that takes as its input
a program that needs to be translated from a
high-level language (e.g. Python) to a low-
level language (e.g. machine language).

— In general, a program can process any data, so it
can have a program as its input to process.

* Deep thought: Could a compiler compile itself
since a compiler is a program? (Yes!)

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

Proof (cont'd)

* Let R be a program that takes input S, where S'is a
program.

* R asks the halt checker HALT what happens if S runs
with itself as input?

* If HALT answers that S will halt if it runs with itself as
input, then R goes into an infinite loop (and does not
halt).

e |f HALT answers that S will not halt if it runs with itself
as input, then R halts.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

5/5/18

How R Works

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

R gets evil

* What happens if R tests itself?

— If HALT answers yes (R halts), then R goes into an
infinite loop and does not halt.

v

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

5/5/18

R gets evil (cont'd)

* What happens if R tests itself?
— If HALT answers no (R does not halt), then R halts.

R R ()
- i\
R F
A Python Way To Look At It
def r():

if halt(r) == True:
while True: #loop 4ever
None
else:

return None #halt

15110 Principles of Computing, Carnegie

Mellon University - CORTINA 2

5/5/18

Contradiction!

No matter what HALT answers about R, R does the
opposite, so HALT can never answer the halting
problem for the specific program R.

— Therefore, a universal halting checker HALT cannot exist.

Conclusion: We can never write a computer
program that determines if ANY program halts
with ANY input.

— It doesn't matter how powerful the computer is.

— It doesn't matter how much time we devote to the
computation.

15110 Principles of Computing, Carnegie 13
Mellon University - CORTINA

=" [ENTRANCE
ONLY i .
y DO NOT 3 .
- ENTER |FSetatg
¥

15110 Principles of Computing, Carnegie 14
Mellon University - CORTINA

5/5/18

The Future of Computing?
DNA Computing

* Use of DNA strands to compute solutions quickly.
* Computing with DNA
by Leonard Adleman (UC Berkeley)

— Demonstrated the use of DNA to solve a small instance
of the Hamiltonian path problem.

— DNA sequences consist of the letters A,C,T,G
representing the bases adenine, thymine, guanine, and
cytosine.

* Adleman demonstrated the use of DNA to solve a

Hamiltonian Path problem with 7 cities in 1998.

— The Hamiltonian Path problem is NP Complete.

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

(B, 4l

3N)

2 [3nk
2 |3¢

/
(vord

Leonard Adleman with his DNA-based
computer, which has solved a logic problem that
no person could complete by hand, setting a
new milestone for this infant technology. (Photo
by Irene Fertik)

15110 Principles of Computing, Carnegie

Mellon University - CORTINA 16

5/5/18

The Future of Computing?
Quantum Computing

A subatomic particle has spin (up or down). In

quantum physics, particles can be in a state defined by

superposition (up and down).

— Using quantum mechanics, a quantum computer can
do computations simultaneously since particles can be
in two states at once.

— This only holds as long as we don’ t interfere or
observe these particles. If we do, then the particles will
make a random decision and choose one of the two
states. (decoherence)

15110 Principles of Computing, Carnegie 17
Mellon University - CORTINA

Qubits

In a classic computer, basic information is stored in bit
form. A bit can only be in one of two states at any
given time.

In a quantum computer, basic information is stored in
a qubit which can be in the states 0 and 1 at the same
time (with some probability for each).

A 4-qubit quantum computer can store 16 separate
computations at the same time.

— This improvement grows exponentially as the size of the
quantum computer grows.

15110 Principles of Computing, Carnegie 18
8

Mellon University - CORTINA

5/5/18

Quantum Computing and RSA

* Peter Shor (at AT&T Bell Labs in 1994) described an
algorithm that could factor a number that was the
product of two prime numbers in polynomial time
using a quantum computing model.

— This algorithm could be used with a quantum computer
(once developed) to crack the RSA encryption algorithm.

* In 2001, IBM demonstrated a 7-qubit quantum
computer to factor the number 15 into the prime
values 3 and 5.

* 2017:1BM makes 20 qubit quantum computing
machine available as a cloud service

15110 Principles of Computing, Carnegie 19
Mellon University - CORTINA

.‘;’

GRR

3] 2
o 1% i
> M.

D-Wave Systems “demonstrated”
a 28-qubit quantum computer

in November 2007 at a SCO7

(a supercomputing conference).

15110 Principles of Computing, Carnegie
Mellon University - CORTINA

20

5/5/18

10

What's Next?

Will we eventually prove that P = NP or P = NP?

Will the computers for the next generation be
made up of DNA or quantum particles rather than
silicon?

Will robots eventually replace humans as the
dominant race due to their superior intelligence?

Will humans become more and more robotic as
they evolve?

PLEASE COMPLETE YOUR FACULTY COURSE
EVALUATION (FCE) AND TA EVALUATION!

15110 Principles of Computing, Carnegie

. . 21
Mellon University - CORTINA

5/5/18

11

