
5/5/18

1

UNIT	14C	
The	Limits	of	Compu4ng:		
Non-computable	Func4ons	

(and	the	Future	of	Compu4ng)	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 1	

Problem	Classifica4ons	

•  Tractable	Problems	
–  Problems	that	have	reasonable,	polynomial-

4me	solu4ons	
•  Intractable	Problems	

–  Problems	that	may	have	no	reasonable,	
polynomial-4me	solu4ons	

•  Noncomputable	Problems	
–  Problems	that	have	no	algorithms	at	all	to	

solve	them	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 2	

5/5/18

2

Program	Termina4on	

•  Can	we	determine	if	a	program	will	terminate	
given	a	valid	input?	

•  Example:	
 def mystery1(x):
 while (x != 1):
 x = x – 2

–  Does	this	algorithm	terminate	when	x	=	15?	
–  Does	this	algorithm	terminate	when	x	=	110?	

	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 3	

Another	Example	
 def mystery2(x):
 while (x != 1):
 if x % 2 == 0:
 x = x // 2
 else:
 x = 3 * x + 1
 	

–  Does	this	algorithm	terminate	when	x	=	15?	
–  Does	this	algorithm	terminate	when	x	=	110?	
–  Does	this	algorithm	terminate	for	any	posi4ve	x?	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 4	

5/5/18

3

The	Hal4ng	Problem	

•  Does	a	universal	program	HALT	exist	that	can	
take	any	program	P	and	any	input	I	for	
program	P	and	determine	if	P	terminates/
halts	when	run	with	input	I?	

•  Alan	Turing	showed	that	such	a	single,	
universal	program	HALT	cannot	exist.	
– This	is	known	as	the	Hal4ng	Problem.	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 5	

Proof	by	Contradic4on	
•  Assume	a	program	HALT	exists	that	requires	a	program	

P	and	an	input	I.	
–  HALT	determines	if	program	P	will	halt	when	P	is		

executed	using	input	I.	No	assump4ons	are	made	on	
how	it	does	this.	Anything	is	possible.	

–  We	will	show	that	HALT	cannot	exist	by	showing	that	if	it	
did	exist	we	would	get	a	logical	contradic:on.	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 6	

HALT
HALT CHECKER

P

I

YES

NO

HALT outputs YES
if P halts when run
with input I
HALT outputs NO
if P does not halt
when run with input I

5/5/18

4

Can	a	program	have	as	its	input	
a	program?	

•  A	compiler	is	a	program	that	takes	as	its	input	
a	program	that	needs	to	be	translated	from	a	
high-level	language	(e.g.	Python)	to	a	low-
level	language	(e.g.	machine	language).	
–  In	general,	a	program	can	process	any	data,	so	it	
can	have	a	program	as	its	input	to	process.	

•  Deep	thought:	Could	a	compiler	compile	itself	
since	a	compiler	is	a	program?	(Yes!)	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 7	

Proof	(cont'd)	

•  Let	R	be	a	program	that	takes	input	S,	where	S	is	a	
program.		

•  R	asks	the	halt	checker	HALT	what	happens	if	S	runs	
with	itself	as	input?		

•  If	HALT	answers	that	S	will	halt	if	it	runs	with	itself	as	
input,	then	R	goes	into	an	infinite	loop	(and	does	not	
halt).	

•  If	HALT	answers	that	S	will	not	halt	if	it	runs	with	itself	
as	input,	then	R	halts.	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 8	

5/5/18

5

How	R	Works	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 9	

R

HALT
HALT CHECKER

S

S

YES

NO
S

OK
(STOP)

R	gets	evil	

•  What	happens	if	R	tests	itself?	
–  If	HALT	answers	yes	(R	halts),	then	R	goes	into	an	
infinite	loop	and	does	not	halt.	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 10	

R

HALT
HALT CHECKER

R

R

YES

NO
R

OK
(HALT)

5/5/18

6

R	gets	evil	(cont'd)	

•  What	happens	if	R	tests	itself?	
–  If	HALT	answers	no	(R	does	not	halt),	then	R	halts.	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 11	

R

HALT
HALT CHECKER

R

R

YES

NO
R

OK
(HALT)

A	Python	Way	To	Look	At	It	

def r():
 if halt(r) == True:

 while True: #loop 4ever

 None

 else:

 return None #halt

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 12	

5/5/18

7

Contradic4on!	

•  No	macer	what	HALT	answers	about	R,	R	does	the	
opposite,	so	HALT	can	never	answer	the	hal4ng	
problem	for	the	specific	program	R.		

–  Therefore,	a	universal	hal4ng	checker	HALT	cannot	exist.	

•  Conclusion:	We	can	never	write	a	computer	
program	that	determines	if	ANY	program	halts	
with	ANY	input.	

–  It	doesn't	macer	how	powerful	the	computer	is.	
–  It	doesn't	macer	how	much	4me	we	devote	to	the	

computa4on.	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 13	

Contradic4on	in	Real	Life	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 14	

5/5/18

8

The	Future	of	Compu4ng?	
DNA	Compu4ng	

•  Use	of	DNA	strands	to	compute	solu4ons	quickly.	
•  Compu4ng	with	DNA	

by	Leonard	Adleman	(UC	Berkeley)	
–  Demonstrated	the	use	of	DNA	to	solve	a	small	instance	

of	the	Hamiltonian	path	problem.	
–  DNA	sequences	consist	of	the	lecers	A,C,T,G	

represen4ng	the	bases	adenine,	thymine,	guanine,	and	
cytosine.	

•  Adleman	demonstrated	the	use	of	DNA	to	solve	a	
Hamiltonian	Path	problem	with	7	ci4es	in	1998.	

–  The	Hamiltonian	Path	problem	is	NP	Complete.	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 15	

Leonard	Adleman	with	his	DNA-based	
computer,	which	has	solved	a	logic	problem	that	
no	person	could	complete	by	hand,	sefng	a	
new	milestone	for	this	infant	technology.	(Photo	
by	Irene	Fer4k)	
	 15110	Principles	of	Compu4ng,	Carnegie	

Mellon	University	-	CORTINA	 16	

5/5/18

9

The	Future	of	Compu4ng?	
Quantum	Compu4ng	

•  A	subatomic	par4cle	has	spin	(up	or	down).	In	
quantum	physics,	par4cles	can	be	in	a	state	defined	by	
superposi(on	(up	and	down).	
–  Using	quantum	mechanics,	a	quantum	computer	can	

do	computa4ons	simultaneously	since	par4cles	can	be	
in	two	states	at	once.	

–  This	only	holds	as	long	as	we	don’t	interfere	or	
observe	these	par4cles.	If	we	do,	then	the	par4cles	will	
make	a	random	decision	and	choose	one	of	the	two	
states.	(decoherence)	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 17	

Qubits	
•  In	a	classic	computer,	basic	informa4on	is	stored	in	bit	

form.	A	bit	can	only	be	in	one	of	two	states	at	any	
given	4me.	

•  In	a	quantum	computer,	basic	informa4on	is	stored	in	
a	qubit	which	can	be	in	the	states	0	and	1	at	the	same	
4me	(with	some	probability	for	each).	

•  A	4-qubit	quantum	computer	can	store	16	separate	
computa4ons	at	the	same	4me.	
–  This	improvement	grows	exponen4ally	as	the	size	of	the	

quantum	computer	grows.	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 18	

5/5/18

10

Quantum	Compu4ng	and	RSA	

•  Peter	Shor	(at	AT&T	Bell	Labs	in	1994)	described	an	
algorithm	that	could	factor	a	number	that	was	the	
product	of	two	prime	numbers	in	polynomial	4me	
using	a	quantum	compu4ng	model.	

–  This	algorithm	could	be	used	with	a	quantum	computer	
(once	developed)	to	crack	the	RSA	encryp4on	algorithm.	

•  In	2001,	IBM	demonstrated	a	7-qubit	quantum	
computer	to	factor	the	number	15	into	the	prime	
values	3	and	5.	

•  2017:	IBM	makes	20	qubit	quantum	compu4ng	
machine	available	as	a	cloud	service	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 19	

15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 20	

D-Wave Systems “demonstrated”
a 28-qubit quantum computer
in November 2007 at a SC07
(a supercomputing conference).

5/5/18

11

What's	Next?	

•  Will	we	eventually	prove	that	P	=	NP	or	P	≠	NP?	
•  Will	the	computers	for	the	next	genera4on	be	

made	up	of	DNA	or	quantum	par4cles	rather	than	
silicon?	

•  Will	robots	eventually	replace	humans	as	the	
dominant	race	due	to	their	superior	intelligence?	

•  Will	humans	become	more	and	more	robo4c	as	
they	evolve?	
	
PLEASE	COMPLETE	YOUR	FACULTY	COURSE	
EVALUATION	(FCE)	AND	TA	EVALUATION!	

	 15110	Principles	of	Compu4ng,	Carnegie	
Mellon	University	-	CORTINA	 21	

