

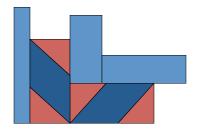
UNIT 14A The Limits of Computing: Intractability

15110 Principles of Computing, Carnegie Mellon University - CORTINA

1

Decision Problems

- A specific set of computations are classified as decision problems.
- An algorithm describes a decision problem if its output is simply YES or NO, depending on whether a certain property holds for its input.
- Example:
 Given a set of N shapes,
 can these shapes be
 arranged into a rectangle?



15110 Principles of Computing, Carnegie Mellon University - CORTINA

The Monkey Puzzle

- Given:
 - A set of N square cards whose sides are imprinted with the upper and lower halves of colored monkeys.
 - N is a square number, such that N = M².
 - Cards cannot be rotated.

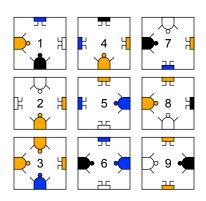
Problem:

 Determine if an arrangement of the N cards in an M X M grid exists such that each adjacent pair of cards display the upper and lower half of a monkey of the same color.

> 15110 Principles of Computing, Carnegie Mellon University - CORTINA

3

Example



15110 Principles of Computing, Carnegie Mellon University - CORTINA

Algorithm

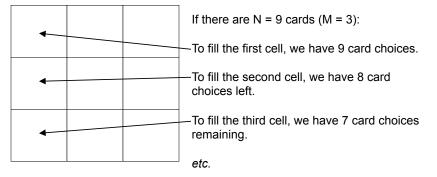
Simple brute-force algorithm:

- Pick one card for each cell of M X M grid.
- Verify if each pair of touching edges make a full monkey of the same color.
- If not, try another arrangement until a solution is found or all possible arrangements are checked.
- Answer "YES" if a solution is found. Otherwise, answer "NO" if all arrangements are analyzed and no solution is found.

15110 Principles of Computing, Carnegie Mellon University - CORTINA

5

Analysis



The total number of unique arrangements for N = 9 cards (without rotation) is 9!

15110 Principles of Computing, Carnegie Mellon University - CORTINA

Analysis (cont'd)

For N cards, the number of arrangements to examine is N! (N factorial)

If we can analyze one arrangement in a microsecond:

<u>N</u>	Time to analyze all arrangements
9	$362,880 \mu s = 0.37 \text{ seconds}$
16	20,922,789,888,000 μs = 242 days
25	15,511,210,043,330,985,984,000,000 μs
	= 492 billion years

15110 Principles of Computing, Carnegie Mellon University - CORTINA

7

Classifications

- Algorithms that are O(N^k) for some fixed k are polynomial-time algorithms.
 - O(1), O(log N), O(N), O(N log N), O(N²)
 - reasonable, tractable
- All other algorithms are super-polynomial-time algorithms.
 - O(2^N), O(3^N), O(N!)
 - unreasonable, intractable

15110 Principles of Computing, Carnegie Mellon University - CORTINA

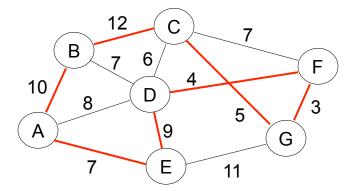
Traveling Salesperson

- Given: a weighted graph of nodes representing cities and edges representing flight paths (weights represent cost)
- Is there a route that takes the salesperson through every city and back to the starting city with cost no more than K?
 - The salesperson can visit a city only once (except for the start and end of the trip).

15110 Principles of Computing, Carnegie Mellon University - CORTINA

9

Traveling Salesperson



Is there a route with cost at most 52? Is there a route with cost at most 48?

YES (Route above costs 50.) YES? NO?

15110 Principles of Computing, Carnegie Mellon University - CORTINA

Analysis

- If there are N cities, what is the maximum number of routes that we might need to compute?
- Worst-case: There is a flight available between every pair of cities. (In our example, every city would have 6 flights available.)
- Compute cost of every possible route.
 - Pick a starting city (any city will do)
 - Pick the next city from N-1 choices remaining
 - Pick the next city from N-2 choices remaining
 - **–** ...
- Maximum number of routes: (N-1)! = O(N!)

15110 Principles of Computing, Carnegie Mellon University - CORTINA

11

Map Coloring

- Given a map of N territories, can the map be colored using K colors such that no two adjacent territories are colored with the same color?
- K=4: Answer is always yes.
- K=2: Only if the map contains no point that is the junction of an odd number of territories.

15110 Principles of Computing, Carnegie Mellon University - CORTINA

Map Coloring

 Given a map of N territories, can the map be colored using 3 colors such that no two adjacent territories are colored with the same color?

15110 Principles of Computing, Carnegie Mellon University - CORTINA

13

Analysis

- Given a map of N territories, can the map be colored using 3 colors such that no two adjacent territories are colored with the same color?
 - Pick a color for territory 1 (3 choices)
 - Pick a color for territory 2 (3 choices)

– ...

- There are 3⁴⁸ possible colorings to examine.
- In general, for N territories, the number of colorings to check is 3^N = O(3^N)

15110 Principles of Computing, Carnegie Mellon University - CORTINA

Satisfiability

- Given a Boolean formula with N variables using the operators AND, OR and NOT:
 - Is there an assignment of boolean values for the variables so that the formula is true (satisfied)?
 Example: (A AND B) OR (NOT C AND A)
 - Truth assignment: A = True, B = True, C = False.
- How many assignments do we need to check for N variables? (Think: how big is the truth table?)
 - Each symbol has 2 possibilities ... There are $2^N = O(2^N)$ possible assignments.

15110 Principles of Computing, Carnegie Mellon University - CORTINA

15

The Big Picture

- Intractable problems are solvable if the amount of data (N) that we're processing is small.
- But if N is not small, then the amount of computation grows exponentially and the solutions quickly become intractable (i.e. out of our reach).
- Computers can solve these problems if N is not small, but it will take far too long for the result to be generated.
 - We would be long dead before the result is computed.

15110 Principles of Computing, Carnegie Mellon University - CORTINA

What's Next

- For a specific decision problem, is there single tractable (polynomial-time) algorithm to solve any instance of this problem?
- If one existed, can we use it to solve other decision problems?
- What is one of the big computational questions to be answered in the 21st century?

15110 Principles of Computing, Carnegie Mellon University - CORTINA