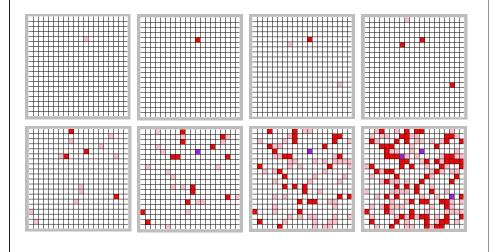


UNIT 10C Visualizing Data: Simulation Example

15110 Principles of Computing, Carnegie Mellon University - CORTINA


Example: Flu Virus Simulation

- Goal: Develop a simple graphical simulation that shows how disease spreads through a population.
 - Agent-based
 - Abstract
 - Dynamic
 - Stochastic
 - Discrete

15110 Principles of Computing, Carnegie Mellon University

2

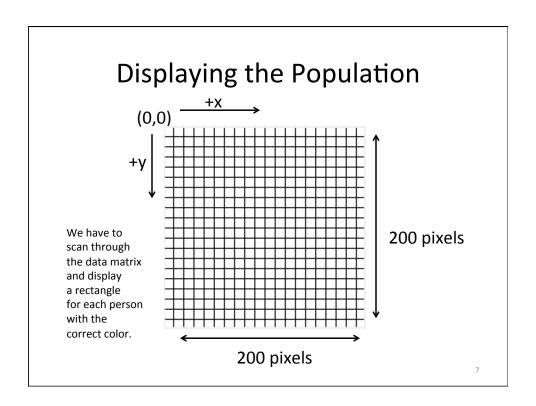
Example: Flu Virus Simulation

Model Assumptions

- A person starts off as healthy.
- Each day, a healthy person comes in contact with 4 random people. If any of those random people is contagious, then the healthy person becomes infected.
- It takes one day for the infected person to become contagious.
- After a person has been contagious for 4 days, then the person is non-contagious and cannot spread the virus nor can the person get the virus again due to immunity.

4

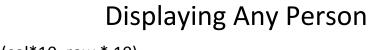
Health States

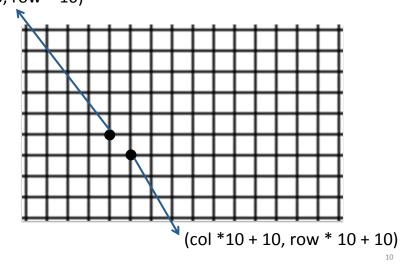

0	white	healthy	HEALTHY = 0		
1	pink	infected	INFECTED = 1		
2	red	contagious (day 1)	DAY1 = 2		
3	red	contagious (day 2)	DAY2 = 3		
4	red	contagious (day 3)	DAY3 = 4		
5	red	contagious (day 4)	DAY4 = 5		
6	purple	immune (non-contagious)	IMMUNE = 6		

15110 Principles of Computing, Carnegie Mellon University 5

Storing the Population

- We can use a matrix (list of lists) of size 20 X 20
- Each entry is an integer representing a person's health state.


```
[[1,1,4,0,0,1,6,...,5],
[2,1,0,0,5,3,1,...,0],
...
[3,0,1,0,6,5,2,...,4]]
```



Displaying The First Person A rectangle with top left (0,0) and bottom right (10,10) (0,0) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 col (10,10) (10,10) 3 4 5 6 7 8 row

Generalizing

row	col	top left x	top left y	bottom right x	bottom right Y
1	1	10	10	20	20
1	2	20	10	30	20
1	3	30	10	40	20
2	1	10	20	20	30
3	1	10	30	20	40
row	col	col*10	row*10	col*10+10	row*10+10

(col*10, row * 10)

Coding the simulation

IN CLASS DEMONSTRATION

Exercise on your own:

How can you change the simulation so you can use parameters to adjust the:

- delay time
- population size (assuming its a perfect square)

New feature: Events by chance

If a healthy person contacts a contagious person, she gets sick 40% of the time.

```
random_x = randint(0,19)
random_y = randint(0,19)
if contagious(matrix, random_x, random_y) \
          and randint(0,99) < 40:
    newmatrix[i][j] = 1</pre>
```

New feature: Finding neighbors

Instead of picking 4 random people, you pick the 4 neighbors of the person.

```
cell = matrix[i][j]
# NO!
if matrix[i-1][j] == INFECTED:
    ...
# YES!
if i > 0 and matrix[i-1][j]==INFECTED:
    ...
```

Why Do Simulations?

- To predict the behavior of a system.
 - Will this building survive an earthquake?
- To test a theory against data.
 - Do the predictions generated by these equations match what we observe in the real world?
- To explore consequences of assumptions.
 - How quickly does the flu virus spread?

15