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UNIT	8B	
Computer	Organiza6on:		
Levels	of	Abstrac6on	
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A	Full	Adder	
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S = A ⊕ B ⊕ Cin   (the odd parity function!) 
Cout = ((A ⊕ B) ∧ Cin) ∨ (A ∧ B)  

Full	Adder	(FA)	
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Abstractly: 
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Another	Full	Adder	(FA)	
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http://students.cs.tamu.edu/wanglei/csce350/handout/lab6.html 

Still the same 
abstractly: 

8-bit	Full	Adder	
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Mul6plexer	(MUX)	
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http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html 

•  A	mul6plexer	chooses	between	a	set	of	inputs.	
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Arithme6c	Logic	Unit	(ALU)	
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OP1OP0 

http://cs-alb-pc3.massey.ac.nz/notes/59304/l4.html 
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Flip	Flop	

•  A	flip	flop	is	a	sequen6al	circuit	that	is	able	to	
maintain	(save)	a	state.		
–  Example:	D	(Data)	Flip-Flop	–	sets	output	Q	to	input	D	
when	clock	turns	on.	(Images	from	Wikipedia)	
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Clock 
Clock 

S=Set Q to 1,  
R=Reset Q to 0 

Registers	

•  A	memory	register	is	
	just	a	set	of	edge-	
triggered	flip-flops.	
Registers	are		
triggered	by	
a	clock	signal.	
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http://cpuville.com/register.htm 

 



6 

Central	Processing	Unit	(CPU)	

•  A	CPU	contains:	
–  Arithme6c	Logic	Unit	to	perform	computa6on	
–  Registers	to	hold	informa6on	

•  Instruc6on	register	(current	instruc6on	being	executed)	
•  Program	counter	(to	hold	loca6on	of	next	instruc6on	in	memory)	
•  Accumulator	(to	hold	computa6on	result	from	ALU)	
•  Data	register(s)	(to	hold	other	important	data	for	future	use)	

–  Control	unit	to	regulate	flow	of	informa6on	and	
opera6ons	that	are	performed	at	each	instruc6on	step	
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A	sample	CPU	

h]p://cpuville.com/main.htm	
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Computer	
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http://cse.iitkgp.ac.in/pds/notes/intro.html 

Abstrac6on	

•  We	can	use	layers	of	abstrac6on	to	hide	details	of	
the	computer	design.	

•  We	can	work	in	any	layer,	not	needing	to	know	how	
the	lower	layers	work	or	how	the	current	layer	fits	
into	the	larger	system.	
	->	transistors		
->	gates		
->	circuits	(adders,	mul6plexors,	flip-flops)	
->	central	processing	units	(ALU,	registers,	control)	
->	computer	
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Programming	a	Machine	

•  All	instruc6ons	for	a	program	are	stored	in	computer	
memory	in	binary,	just	like	data.	

•  A	program	is	needed	that	translates	human	readable	
instruc6ons	(e.g.	in	Python)	into	binary	instruc6ons	
(“machine	language”).	
–  An	interpreter	is	a	program	that	translates	one	instruc6on	
at	a	6me	into	machine	language	to	be	executed	by	the	
computer.	

–  A	compiler	is	a	program	that	translates	an	en6re	program	
into	machine	language	which	is	then	executed	by	the	
computer.	

15110 Principles of Computing, 
Carnegie Mellon University - CORTINA 15 

von	Neumann	Architecture	

•  Most	computers	follow	the	fetch-decode-
execute	cycle	introduced	by	John	von	
Neumann.	
– Fetch	next	instruc6on	from	memory.	
– Decode	instruc6on	and	get	any	data	it	needs	
(possibly	from	memory).	

– Execute	instruc6on	with	data	and	store	results	
(possibly	into	memory).	

– Repeat.	
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