
1

UNIT	8B	
Computer	Organiza6on:		
Levels	of	Abstrac6on	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 1

A	Full	Adder	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 2

A	 B	 Cin	 Cout	 S	
0	 0	 0	

0	 0	 1	

0	 1	 0	

0	 1	 1	

1	 0	 0	

1	 0	 1	

1	 1	 0	

1	 1	 1	

A	

B	

S	Cout	

Cin	

2

A	Full	Adder	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 3

A	 B	 Cin	 Cout	 S	
0	 0	 0	 0	 0	

0	 0	 1	 0	 1	

0	 1	 0	 0	 1	

0	 1	 1	 1	 0	

1	 0	 0	 0	 1	

1	 0	 1	 1	 0	

1	 1	 0	 1	 0	

1	 1	 1	 1	 1	

A	

B	

S	Cout	

Cin	

S = A ⊕ B ⊕ Cin (the odd parity function!)
Cout = ((A ⊕ B) ∧ Cin) ∨ (A ∧ B)

Full	Adder	(FA)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 4

1-bit	
Full	

Adder	

A B

Cin Cout

S

S = A ⊕ B ⊕ Cin

Cout = ((A ⊕ B) ∧ Cin) ∨ (A ∧ B)

Abstractly:

3

Another	Full	Adder	(FA)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 5

1-bit	
Full	

Adder	

A B

Cin Cout

S

http://students.cs.tamu.edu/wanglei/csce350/handout/lab6.html

Still the same
abstractly:

8-bit	Full	Adder	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 6

1-bit	
Full	

Adder	

A0 B0

Cin

S0

1-bit	
Full	

Adder	

A1

B1

S1

1-bit	
Full	

Adder	

A7

B7

Cout

S7

1-bit	
Full	

Adder	

A2

B2

S2

...

8-bit	
FA	

A B

Cin Cout

S

8 ⁄ ⁄ 8

 ⁄ 8

4

Mul6plexer	(MUX)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 7

http://www.cise.ufl.edu/~mssz/CompOrg/CDAintro.html

•  A	mul6plexer	chooses	between	a	set	of	inputs.	

A	 B	 F	

0	 0	 D1	

0	 1	 D2	

1	 0	 D3	

1	 1	 D4	

MUX	

A B

F

D1
D2
D3
D4

Arithme6c	Logic	Unit	(ALU)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 8

OP1OP0

http://cs-alb-pc3.massey.ac.nz/notes/59304/l4.html

OP0	 OP1	 F	

0	 0	 A	∧	B	
0	 1	 A	∨	B	
1	 0	 A	

1	 1	 A	+	B	

Carry In & OP

5

Flip	Flop	

•  A	flip	flop	is	a	sequen6al	circuit	that	is	able	to	
maintain	(save)	a	state.		
–  Example:	D	(Data)	Flip-Flop	–	sets	output	Q	to	input	D	
when	clock	turns	on.	(Images	from	Wikipedia)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 9

Clock
Clock

S=Set Q to 1,
R=Reset Q to 0

Registers	

•  A	memory	register	is	
	just	a	set	of	edge-	
triggered	flip-flops.	
Registers	are		
triggered	by	
a	clock	signal.	

	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 10

Clock
Reg.	

Clock

D0
D1
D2
D3

Q0
Q1
Q2
Q3

http://cpuville.com/register.htm

6

Central	Processing	Unit	(CPU)	

•  A	CPU	contains:	
–  Arithme6c	Logic	Unit	to	perform	computa6on	
–  Registers	to	hold	informa6on	

•  Instruc6on	register	(current	instruc6on	being	executed)	
•  Program	counter	(to	hold	loca6on	of	next	instruc6on	in	memory)	
•  Accumulator	(to	hold	computa6on	result	from	ALU)	
•  Data	register(s)	(to	hold	other	important	data	for	future	use)	

–  Control	unit	to	regulate	flow	of	informa6on	and	
opera6ons	that	are	performed	at	each	instruc6on	step	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 11

A	sample	CPU	

h]p://cpuville.com/main.htm	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 12

7

Computer	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 13

http://cse.iitkgp.ac.in/pds/notes/intro.html

Abstrac6on	

•  We	can	use	layers	of	abstrac6on	to	hide	details	of	
the	computer	design.	

•  We	can	work	in	any	layer,	not	needing	to	know	how	
the	lower	layers	work	or	how	the	current	layer	fits	
into	the	larger	system.	
	->	transistors		
->	gates		
->	circuits	(adders,	mul6plexors,	flip-flops)	
->	central	processing	units	(ALU,	registers,	control)	
->	computer	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 14

8

Programming	a	Machine	

•  All	instruc6ons	for	a	program	are	stored	in	computer	
memory	in	binary,	just	like	data.	

•  A	program	is	needed	that	translates	human	readable	
instruc6ons	(e.g.	in	Python)	into	binary	instruc6ons	
(“machine	language”).	
–  An	interpreter	is	a	program	that	translates	one	instruc6on	
at	a	6me	into	machine	language	to	be	executed	by	the	
computer.	

–  A	compiler	is	a	program	that	translates	an	en6re	program	
into	machine	language	which	is	then	executed	by	the	
computer.	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 15

von	Neumann	Architecture	

•  Most	computers	follow	the	fetch-decode-
execute	cycle	introduced	by	John	von	
Neumann.	
– Fetch	next	instruc6on	from	memory.	
– Decode	instruc6on	and	get	any	data	it	needs	
(possibly	from	memory).	

– Execute	instruc6on	with	data	and	store	results	
(possibly	into	memory).	

– Repeat.	
15110 Principles of Computing,

Carnegie Mellon University - CORTINA 16

