
1

UNIT	6B	
Organizing	Data:		
Hash	Tables	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 1

Comparing	Algorithms	

•  You	are	a	professor	and	you	want	to	find	an	exam	
in	a	large	pile	of	n	exams,	one	per	student.	

•  Search	the	pile	using	linear	search.	
–  Per	student:			O(n)	
–  Total	for	n	students:			O(n2)	

•  Have	an	assistant	sort	the	exams	first	by	last	name.	
–  Assistant’s	work:	O(n	log	n)	using	merge	sort	
–  Professor:		

•  Search	for	one	student:	O(log	n)	using	binary	search	
•  Total	for	n	students:	O(n	log	n)	

	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 2

2

Another	way	
•  Set	up	a	large	number	of	“buckets”.	
•  Place	each	exam	into	a	bucket	based	on	some	
funcOon.	
–  Example:	100	buckets,	each	labeled	with	a	value	from	00	
to	99.	Use	the	student’s	last	two	digits	of	their	student	ID	
number	to	choose	the	bucket.	

•  Ideally,	if	the	exams	get	distributed	evenly,	there	will	
be	only	a	few	exams	per	bucket.	
–  Assistant:	O(n)		puTng	n	exams	into	the	buckets	
–  Professor:	O(1)	search	for	an	exam	by	going	directly	to	the	
relevant	bucket	and	searching	through	a	few	exams.	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 3

Strings	and	ASCII	codes	
s = "hello"
for i in range(0,len(s)):
 print(ord(s[i]))

104
101
108
108
111

	
	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 4

You can treat a string like a list
in Python.
If you access the ith character and
pass it to the ord function,
you get the ASCII code for that
character.

3

Hash	table	

•  Let's	assume	that	we	are	going	to	store	only	lower	
case	strings	into	a	list	(hash	table).	

>>> table1 = [None] * 26!
>>> table1!
[None, None, None, None, None, None, None,!
None, None, None, None, None, None, None,!
None, None, None, None, None, None, None,!
None, None, None, None, None]!

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 5

Hash	table	

•  We	could	pick	the	list	posiOon	where	each	string	is	
stored	based	on	the	first	leXer	of	the	string	using	
this	hash	funcOon:	

def h(string):
 return ord(string[0]) – 97

The	ASCII	values	of	lowercase	leXers	are:	
'a'	->	97,	'b'	->	98,	'c'	->	99,	'd'	->	100,	etc.	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 6

4

InserOng	into	Hash	Table	

•  To	insert	into	the	hash	table,	we	simply	use	the	
hash	funcOon	h	to	determine	which	index	
(“bucket”)	to	store	the	element.	

def insert(table, name):
 table[h(name)] = name

>>> insert(table1, "aardvark")
>>> insert(table1, "beaver") ...

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 7

Hash	funcOon	(cont'd)	

•  Using	the	hash	funcOon	h:	
–  "aardvark"	would	be	stored	in	the	table	(list)	at	index	0	
–  "beaver"	would	be	stored	in	the	table	(list)	at	index	1	
–  "kangaroo"	would	be	stored	in	the	table	(list)	at	index	10	
–  "whale"	would	be	stored	in	the	table	(list)	at	index	22

>>> table1
["aardvark", "beaver", None, None, None, None,
None, None, None, None, "kangaroo", None,
None, None, None, None, None, None, None,
None, None, None, "whale", None, None, None]

	 15110 Principles of Computing,
Carnegie Mellon University - CORTINA 8

5

Hash	funcOon	(cont'd)	

•  But	if	we	try	to	insert	"bunny"	and	"bear"	into	the	
hash	table,	each	word	overwrites	the	previous	word	
since	they	all	hash	to	index	1:

>>> insert(table1,"bunny")
>>> insert(table1,"bear")
>>> table1
["aardvark", "bear", None, None, None, None,
None, None, None, None, "kangaroo", None,
None, None, None, None, None, None, None,
None, None, None, "whale", None, None, None]
	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 9

Revised	Hash	table	
•  Let's	make	our	hash	table	a	list	of	lists	(a	list	of	

buckets).	Each	bucket	can	hold	more	than	one	string.	
>>> table2 = [None] * 26
>>> for i in range(0,26):
>>> table2[i] = [None]
>>> table2
[[None], [None], [None], [None], [None],  
 [None], [None], [None], [None], [None],  
 [None], [None], [None], [None], [None],  
 [None], [None], [None], [None], [None],  
 [None], [None], [None], [None], [None],  
 [None]]!

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 10

6

Revised	insert	funcOon	
def insert(table, key):
 # find the bucket (sublist) in the table
 # using the hash function h
 bucket = table[h(key)]
 # append the key string to the
 # appropriate bucket (sublist)
 bucket.append(key)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 11

InserOng	into	new	hash	table	
>>> insert(table2, "aardvark")
>>> insert(table2, "beaver")
>>> insert(table2, "kangaroo")
>>> insert(table2, "whale")
>>> insert(table2, "bunny")
>>> insert(table2, "bear")

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 12

7

InserOng	into	new	hash	table	(cont'd)	
>>> table2
[["aardvark"], ["beaver", "bunny", "bear"],
[None], [None], [None], [None], [None],
[None], [None], [None], ["kangaroo"],
[None], [None], [None], [None], [None],
[None], [None], [None], [None], [None],
[None], ["whale"], [None], [None], [None]]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 13

Collisions	

•  "beaver",	"bunny"	and	"bear"	all	end	up	in	the	same	
bucket.	

•  These	are	collisions	in	a	hash	table.		
•  The	more	collisions	you	have	in	a	bucket,	the	more	
you	have	to	search	in	the	bucket	to	find	the	desired	
element.	

•  We	want	to	try	to	minimize	the	collisions	by	creaOng	
a	hash	funcOon	that	distribute	the	keys	(strings)	into	
different	buckets	as	evenly	as	possible.	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 14

8

New	Hash	FuncOon:	First	Try	
def h(string):
 k = 0
 for i in range(0,len(string)):
 k = k + ord(string[i])
 bucket_number = k
 return bucket_number

h(“hello”) => 532
h(“olleh”) => 532
PermutaOons	sOll	give	same	index	(collision)	and	numbers	are		

large,	which	means	we	need	a	large	number	of	buckets.	
15110 Principles of Computing,

Carnegie Mellon University - CORTINA 15

New	Hash	FuncOon:	Second	Try	
def h(string):
 k = 0
 for i in range(0,len(string)):
 k = k * 256 + ord(string[i])
 bucket_number = k
 return bucket_number

h(“hello”) => 448378203247
h(“olleh”) => 478560413032
BeXer,	but	numbers	are	sOll	high.	We	probably	don’t	want	to		

(or	can't)	create	lists	that	have	indices	this	large.	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 16

9

New	Hash	FuncOon:	Third	Try	
def h(string, tablesize):
 k = 0
 for i in range(0,len(string)):
 k = k * 256 + ord(string[i])
 bucket_number = k % tablesize
 return bucket_number

We	can	use	the	modulo	operator	to	take	the	large	
values	and	map	them	to	indices	for	a	smaller	array.	

	
15110 Principles of Computing,

Carnegie Mellon University - CORTINA 17

Revised	insert	funcOon	
def h(string, tablesize):
 k = 0
 for i in range(0,len(string)):
 k = k * 256 + ord(string[i])
 bucket_number = k % tablesize
 return bucket_number

def insert(table, key):
 bucket = table[h(key, len(table))]
 bucket.append(key)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 18

10

Final	results	
>>> table3 = [None] * 13
>>> for i in range(0,13):
>>> table3[i] = [None]
>>> insert(table3,"aardvark")
>>> insert(table3,"bear")
>>> insert(table3,"bunny")
>>> insert(table3,"beaver")
>>> insert(table3,"dog")
>>> table3
[[None], [None], [None], [None], [None], [None],
[None], [None], [None], ["bunny"],
["aardvark", "bear"], ["dog"], ["beaver"]]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 19

Still have one
collision, but
b-words are
distributed better.

Searching	in	a	hash	table	
To	search	for	a	key,	use	the	hash	funcOon	to	find	out	which	

bucket	it	should	be	in,	if	it	is	in	the	table	at	all.	

def contains(table, key):
 bucket_number = h(key,len(table))
 bucket = table[bucket_number]
 for entry in bucket:
 if entry == key:
 return True
 return False

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 20

11

Efficiency	

•  If	the	keys	(strings)	are	distributed	well	throughout	
the	table,	then	each	bucket	will	only	have	a	few	keys	
and	the	search	should	take	O(1)	Ome.	

•  Example:	
If	we	have	a	table	of	size	1000	and	we	hash	4000	keys	
into	the	table	and	each	bucket	has	approximately	the	
same	number	of	keys	(approx.	4),	then	a	search	will	
only	require	us	to	look	at	approx.	4	keys	=>	O(1)		
–  But,	the	distribuOon	of	keys	is	dependent	on	the	keys	and		
the	hash	funcOon	we	use!	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 21

