ittt
OIS

UNIT 5C
Merge Sort

15110 Principles of Computing, 1
Carnegie Mellon University - CORTINA

Divide and Conquer

In the military: strategy to gain or maintain power

In computation:

— Divide the problem into “simpler” versions of
itself.

— Conquer each problem using the same process
(usually recursively).

— Combine the results of the “simpler” versions
to form your final solution.

Examples: Towers of Hanoi, fractals, Binary Search,

Merge Sort

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Merge Sort

Required: List L of n elements.

Result: Returns a new list containing the same

elements in non-decreasing order.

General algorithm for merge sort:

1. Sort the first half using merge sort. (recursive!)
2. Sort the second half using merge sort. (recursive!)

3. Merge the two sorted halves to obtain the

final sorted list.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Divide (Split)

84 | 27 | 49 | 91 | 32 | 83 | 63 | 17
84 | 27 | 49 | 9 32 | 83 | 63 | 17
84 | 27 49 | 91 32 | 53 63 | 17
84 || 27 49 || AN 32 53 63 17

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Conquer (Merge)

i 17 | 27 | 32 | 49 | 53 | 63 | 84 | 91
27 | 49 | 84 | A 17 | 32 | 53 | 63
27 | 84 49 | 91 32 | 53 17 | 63
84 27 49 91 32 53 63 17
Example 1: Merge

12 44 58 62 29 31 74 80 12

12 44 58 62 29 31 74 80 12 29

12 44 58 62 29 31 74 80 12 29 31

12 44 58 62 29 31 74 80 12 29 31 44

Example 1: Merge (cont’ d)

12 44 58 62 29 31 74 80 12 29 31 44 58
12 44 58 62 29 31 74 80 12 29 31 44 58 62

12 44 58 62 29 31 74 80 12 29 31 44 58 62 74 80

Example 2: Merge

58 67 74 90 19 26 31 44 19 26
58 67 74 90 19 26 31 44 19 26 31
58 67 74 90 19 26 31 44 19 26 31 44

58 67 74 90 19 26 31 44 19 26 31 44 58 67 74 90

Merge

Required: Two lists a and b.

- Each list must be sorted already in non-decreasing order.

* Result: Returns a new list containing the same
elements merged together into a new list in non-
decreasing order.

« We’ Il need two variables to keep track of where we
areinlists a and b: index_a and index_b.

Set index_a equal to 0.
Set index_b equal to O.
Create an empty list c.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Merge (cont’ d)

4. While index_a < the length of list a and
index_b < the length of list b, do the following:

a. If alindex_a] < b[index_b], then do the following:
i. append alindex_a] on to the end of list c
ii.add 1 to index_a

Otherwise, do the following:
i. append b[index_b] on to the end of list c
ii.add 1 to index_b

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Merge (cont’ d)

(Once we finish step 4, we’ ve added all of the elements of
either list a or list b to list c. The other list still has some
elements left that need to be added to list c.)

5. If index_a < the length of list a, then:

append all remaining elements of list a on to the end
of list c

Otherwise:

append all remaining elements of list b on to the end
of list ¢

6. Return list c as the result.

15110 Principles of Computing, ”
Carnegie Mellon University - CORTINA

Merge in Python

def merge(a, b):
index a = 0
index b = 0
c = []
while index a < len(a) and index b < len(b):
if a[index_a] <= b[index b]:
c.append(a[index_a])
index a = index a + 1
else:
c.append (b[index b])
index b = index b + 1

15110 Principles of Computing, 12
Carnegie Mellon University - CORTINA

Merge in Python (cont’ d)

if index a < len(a):
for i in range(index_a, len(a)):
c.append(afi])
else:
for i in range(index b, len(b)):
c.append(b[i])
return c

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Merge Sort: Base Case

General algorithm for merge sort:

1. Sort the first half using merge sort. (recursive!)

2. Sort the second half using merge sort. (recursive!)

3. Merge the two sorted halves to obtain the final sorted list.
What is the base case?

If the list has only 1 element, it is already sorted

so just return the list as the result.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Merge Sort: Halfway Point

* General algorithm for merge sort:

1. Sort the first half using merge sort. (recursive!)
2. Sort the second half using merge sort. (recursive!)
3. Merge the two sorted halves to obtain the final sorted list.

* How do we determine the halfway point where we
want to split datalist?

Halfway point: len(datalist) // 2
First half: datalist[0:halfway]
Second half: datalist[halfway:len(datalist)]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Merge Sort in Python

def msort(datalist):
if len(datalist) <= 1: # base case
return datalist
halfway = len(datalist)//2
listl datalist[0:halfway]
list2 = datalist[halfway:len(datalist)]
newlistl = msort(listl) # recursive!

newlist2 = msort(list2) # recursive!
newlist = merge (newlistl, newlist2)

return newlist $\\\\\

using merge function from earlier

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 16

Analyzing Efficiency

If you merge two lists of size i/2 into one new list of
size i, what is the maximum number of appends that
you must do?

— Clearly, each element must be appended to the new list at

some point, so the total number of appends is i.

Merging n lists of size 1 into n/2 lists of size 2:
Merging n/2 lists of size 2 into n/4 lists of size 4:
Merging n/4 lists of size 4 into n/8 lists of size 8:

Merging 2 lists of size n/2 into 1 list of size n: n

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

How many group merges?

How many group merges does it take to go from
n groups of size 1 to 1 group of size n?

Example: Merge sort on 32 elements.

— Break down to groups of size 1 (base case).

— Merge 32 lists of size 1 into 16 lists of size 2.
— Merge 16 lists of size 2 into 8 lists of size 4.

— Merge 8 lists of size 4 into 4 lists of size 8. — 5=log,32
— Merge 4 lists of size 8 into 2 lists of size 16.

— Merge 2 lists of size 16 into 1 list of size 32. _
In general: log,n group merges must occur.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Putting it all together

Total number
of elements
per level is

always n.

go from n groups of size 1 to

It takes log,n iterations to
a single group of size n.

It takes n appends to merge all pairs on one level to the next higher level.

15110 Principles of Computing, 19
Carnegie Mellon University - CORTINA

Big O

* In the worst case, merge sort requires
O(n log n) time to sort a list with n elements.

Number of operations Order of Complexity

n log,n O(n log n)
4n log,yn O(n log n)
n log,n + 2n O(n log n)

Carnegie Mellon University - CORTINA

10

O(N log N)

(not drawn to scale)

Number of 4
Operations n log,n = O(n log n)
384 &
For an n log, n algorithm,
224 the performance is better
than a quadratic algorithm
v but just a little worse than
122 v 96 a linear algorithm.
16 32 64 n

15-105 Principles of
Computation, Carnegie
Mellon University -
CORTIN

(amount of data)

21

Comparing Insertion Sort to Merge Sort
(Worst Case)

n
8
16
32
210
220

isort (n(n+1)/2)

msort (n log,n)

36 24

136 64

528 160
524,800 10,240
549,756,338,176 20,971,520

For list sizes less than 100, there's not much
difference between these sorts, but for larger lists,
there is a clear advantage to merge sort.

15110 Principles of Computing, 2
Carnegie Mellon University - CORTINA

11

Sorting and Searching

* Recall that if we wanted to use binary search,
the array must be sorted.

— What if we sort the array first using merge sort?

* Merge sort O(nlogn) (worst case)
* Binary search O(log n) (worst case)
* Total time: O(nlogn) + O(log n) = O(n log n)

(worst case)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 2

Comparing Big O Functions

Number of 4 ©(2") Oo(n?) O(n log n)
Operations

(amount of data)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 24

12

