

UNIT 5B Binary Search

15110 Principles of Computing, Carnegie Mellon University - CORTINA

1

Binary Search

- Required: List L of n unique elements.
 - The elements must be <u>sorted</u> in increasing order.
- Result: The index of a specific element (called the <u>key</u>)
 or None if the key is not found.
- Algorithm uses two variables lower and upper to indicate the index range in the list where the search is being performed.
 - lower is always one less than the start of the range
 - upper is always one more than the end of the range

15110 Principles of Computing, Carnegie Mellon University - CORTINA

Algorithm

BinarySearch(L,key,lower,upper):

- 1. Return None if the range is empty.
- 2. Set mid = the midpoint between lower and upper
- 3. Return mid if L[mid] is the key you're looking for.
- If the key is less than L[mid], return BinarySearch(L,key,lower,mid)
 Otherwise, return BinarySearch(L,key,mid,upper).

How do we start the binary search? return BinarySearch(L, key, -1, length of list L).

15110 Principles of Computing, Carnegie Mellon University - CORTINA

3

Example 1: Search for 73

```
lower = -1, upper = 15, mid = 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

| lower = 7, upper = 15, mid = 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

| lower = 7, upper = 11, mid = 9 (base case: key is found)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95
```

Found: return 9

Example 2: Search for 42

```
9 10 11 12 13 14
                              8
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95
                    lower = -1, upper = 7, mid = 3
               4
                       6
                              8
                                 9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95
                    lower = 3, upper = 7, mid = 5
                              8
                                 9 10 11 12 13 14
                       6
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95
                    lower = 3, upper = 5, mid = 4
0 1 2
           3
                       6
                           7
                              8
                                  9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95
                lower = 4, upper = 5 (base case: range is empty)
                                  9 10 11 12 13 14
12 25 32 37 41 48 58 60 66 73 74 79 83 91 95
Not found:
              return None
```

Finding mid

• How do you find the midpoint of the range?

```
mid = (lower + upper) // 2
Example: lower = -1, upper = 9
(range has 9 elements)
mid = 4
```

- What happens if the range has an even number of elements?
 - See how integer division works in this case.

15110 Principles of Computing, Carnegie Mellon University - CORTINA

Range is empty

• How do we determine if the range is empty?

```
lower + 1 == upper
```

15110 Principles of Computing, Carnegie Mellon University - CORTINA

7

Binary Search in Python: Recursively

Example 1: Search for 73

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Example 2: Search for 42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

key lower upper

bs_helper(datalist, 73, -1, mid = 7 and 42 < datalist[7] bs_helper(datalist, 73, -1, 7) mid = 3 and 42 > datalist[3] bs helper(datalist, 73, 3, 7) mid = 5 and 42 < datalist[5]</pre> bs helper(datalist, 73, 3, mid = 4 and 42 > datalist[4] bs helper(datalist, 73, 4, lower+1 == upper ---> return None

Analyzing Efficiency

- For binary search, consider the worst-case scenario (target is not in list)
- How many times can we split the search area in half before we the list becomes empty?
- For the previous examples:
 15 --> 7 --> 3 --> 1 --> 0 ... 4 times

15110 Principles of Computing, Carnegie Mellon University - CORTINA

11

In general...

- In general, we can split search region in half |log₂n| + 1 times before it becomes empty.
- Recall the log function:

 $\log_a \mathbf{b} = \mathbf{c}$ is equivalent to $\mathbf{a}^c = \mathbf{b}$

Examples:

 $\log_2 128 = 7$

 $log_2 n = 5$ implies n = 32

In our example: when there were 15 elements, we needed 4 comparisons: $\lfloor \log_2 15 \rfloor + 1 = 3 + 1 = 4$

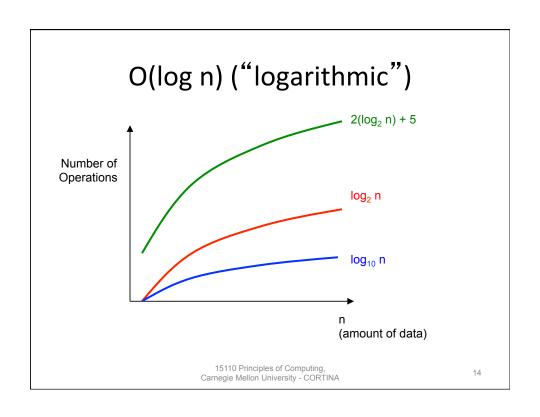
15110 Principles of Computing, Carnegie Mellon University - CORTINA

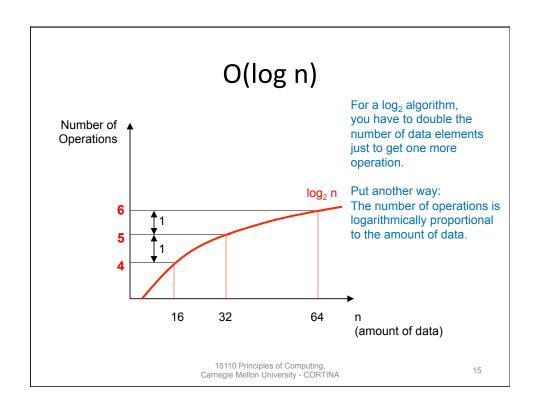
Big O

- In the worst case, binary search requires
 O(log n) time on a sorted list with n elements.
 - Note that in Big O notation, we do not usually specify the base of the logarithm. (It's usually 2.)
 - We only care that the relationship is logarithmic.

•	Number of operations	Order of Complexity
	log ₂ n	O(log n)
	log ₁₀ n	O(log n)
	2(log ₂ n) + 5	O(log n)

15110 Principles of Computing, Carnegie Mellon University - CORTINA





Searchi	ng (Worst C	ase)	
Number of elements	Number of Comparisons <u>Linear Search</u> <u>Binary Search</u>		
15 ≈ 2 ⁴	15	4	
31 ≈ 2 ⁵	31	5	
63 ≈ 2 ⁶	63	6	
$127 \approx 2^7$	127	7	
255 ≈ 2 ⁸	255	8	
$511 \approx 2^9$	511	9	
$1023 \approx 2^{10}$	1023	10	
1 million≈ 2 ²⁰	1000000	20	
1 billion $\approx 2^{30}$	1000000000	30	
15110 Principles of Computing, Carnegie Mellon University - CORTINA			

Binary Search Pays Off, but...

- Finding an element in a list with a billion elements requires only 30 comparisons!
- BUT....
 - The list must be sorted.
 - What if we sort the list first using insertion sort?

Insertion sort O(n²) (worst case)
 Binary search O(log n) (worst case)
 Total time: O(n²) + O(log n) = O(n²)

Luckily there are faster ways to sort in the worst case...

15110 Principles of Computing, Carnegie Mellon University - CORTINA