UNIT 5B
Binary Search

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Binary Search

Required: List L of n unique elements.

— The elements must be sorted in increasing order.

Result: The index of a specific element (called the key)
or None if the key is not found.

Algorithm uses two variables lower and upper to
indicate the index range in the list where the search is

being performed.
— lower is always one less than the start of the range

— upper is always one more than the end of the range

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Algorithm

BinarySearch(L,key,lower,upper):

1. Return None if the range is empty.

2. Set mid = the midpoint between lower and upper
3. Return mid if L[mid] is the key you’ re looking for.
4

If the key is less than L[mid],
return BinarySearch(L,key,lower,mid)
Otherwise, return BinarySearch(L,key,mid,upper).

How do we start the binary search?
return BinarySearch(L, key, -1, length of list L).

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Example 1: Search for 73

lower = -1, upper = 15, mid =7

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

lower =7, upper = 15, mid = 11

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

lower = 7, upper = 11, mid = 9 (base case: key is found)

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Found: return 9

Example 2: Search for 42

lower = -1, upper = 15, mid =7

12 25 32 37 41 48 58 60 66 73 74 79 83 91

lower = -1, upper =7, mid = 3

12 25 32 37 41 48 58 60 66 73 74 79 83 91

lower = 3, upper =7, mid =5

12 25 32 37 41 48 58 60 66 73 74 79 83 91

lower = 3, upper = 5, mid = 4

12 25 32 37 41 48 58 60 66 73 74 79 83 91

lower = 4, upper = 5 (base case: range is empty)

12 25 32 37 41 48 58 60 66 73 74 79 83 91
Not found: return None

95

95

95

95

95

Findingmid

* How do you find the midpoint of the range?
mid = (lower + upper) // 2
Example: lower = -1, upper = 9
(range has 9 elements)
mid = 4
* What happens if the range has an even
number of elements?
— See how integer division works in this case.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Range is empty

* How do we determine if the range is empty?

lower + 1 == upper

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Binary Search in Python: Recursively

def bs helper(datalist, key, lower, upper):
if lower + 1 == upper: # range empty
return None
mid = (lower + upper)//2
if key == datalist[mid]: # found key
return mid
if key < datalist[mid]:
return bs helper(datalist, key, lower, mid)
else:
return bs helper(datalist, key, mid, upper)

def bsearch(datalist, key):
return bs_helper(datalist, key, -1, len(datalist))

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 8

Example 1: Search for 73

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

key lower upper
bs_helper (datalist, 73, -1, 15)
mid = 7 and 73 > datalist[7]
bs_helper (datalist, 73, 7, 15)
mid = 11 and 73 < datalist[11]
bs_helper (datalist, 73, 7, 11)
mid = 9 and 73 == datalist[9]
---> return 9

Example 2: Search for 42

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

key lower upper
bs_helper (datalist, 73, -1, 15)

mid = 7 and 42 < datalist[7]
bs_helper(datalist, 73, -1, 7)

mid = 3 and 42 > datalist[3]
bs_helper(datalist, 73, 3, 7)

mid = 5 and 42 < datalist[5]
bs_helper(datalist, 73, 3, 5)

mid = 4 and 42 > datalist[4]
bs_helper (datalist, 73, 4, 5)

lower+l == upper

-——> return None

Analyzing Efficiency

For binary search, consider the worst-
case scenario (target is not in list)

How many times can we split the
search area in half before we the list
becomes empty?

For the previous examples:
15->7->3->1->0 ..4times

15110 Principles of Computing, ”
Carnegie Mellon University - CORTINA

In general...

In general, we can split search region in half
|log,n]| + 1 times before it becomes empty.

Recall the log function:

log.b=c isequivalentto a‘=b
Examples:
log,128 =7
log,n =5 impliesn =32
In our example: when there were 15 elements, we
needed 4 comparisons: |log,15|+1=3+1=4

15110 Principles of Computing, 12
Carnegie Mellon University - CORTINA

Big O

* In the worst case, binary search requires
O(log n) time on a sorted list with n elements.

— Note that in Big O notation, we do not usually
specify the base of the logarithm. (It's usually 2.)

— We only care that the relationship is logarithmic.

e Number of operations Order of Complexity

log,n O(log n)
log,,n O(log n)
2(log,n) +5 O(log n)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

O(log n) (“logarithmic”)

2(log, n) +5
A
Number of
Operations
log, n
logso n

n
(amount of data)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

O(log n)

For a log, algorithm,
you have to double the

Number of a
Operations number of data elements
just to get one more
operation.
log, n Put another way:
6 The number of operations is
+4 logarithmically proportional
5% to the amount of data.
16 32 64 n
(amount of data)
15110 Principles of Computing, 15
Carnegie Mellon University - CORTINA
Searching (Worst Case)
Number of elements Number of Comparisons
Linear Search Binary Search
15=24 15 4
31=2° 31 5
63 = 26 63 6
127 =2/ 127 7
255 =28 255 8
511=2° 511 9
1023 = 210 1023 10
1 million= 220 1000000 20
1 billion = 23° 1000000000 30

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Binary Search Pays Off, but...

* Finding an element in a list with a billion
elements requires only 30 comparisons!

* BUT....
— The list must be sorted.
— What if we sort the list first using insertion sort?

* Insertion sort 0o(n?) (worst case)
* Binary search O(log n) (worst case)
* Total time: 0(n?) + O(log n) = O(n?)

Luckily there are faster ways to sort in the worst case...

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

