
1

UNIT	5A	
Recursion:	Basics	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 1

Recursion	

•  A	recursive	opera6on	is	an	opera6on		
that	is	defined	in	terms	of	itself.	

	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 2

Sierpinski's
Gasket

http://fusionanomaly.net/recursion.jpg

2

Recursive	Defini6ons	

•  Every	recursive	defini6on	includes	two	parts:	
–  Base	case	(non-recursive)	

A	simple	case	that	can	be	done	without	solving	
the	same	problem	again.	

–  Recursive	case(s)	
One	or	more	cases	that	are	“simpler”	versions	
of	the	original	problem.	
•  By	“simpler”,	we	some6mes	mean	“smaller”	or	
“shorter”	or	“closer	to	the	base	case”.	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 3

GCD	

def gcd2(x, y):
 if y == 0:
 return x
 else:
 return gcd2(y, x % y)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 4

base case

recursive
case
(a “simpler”
version of
the same
problem)

3

Factorial	

•  Defini6on: 	n!	=	n(n-1)(n-2)…(2)(1)	
•  Since	(n-1)(n-2)…(2)(1)	=	(n-1)!		

–  n!	=	n(n-1)!,	for	n	>	0	
–  n!	=	1	for	n	=	0	(base	case)	

•  Example:		
4! = 4(3!) = 4(6) = 24
 3! = 3(2!) = 3(2) = 6
 2! = 2(1!) = 2(1) = 2
 1! = 1(0!) = 1(1) = 1

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 5

Factorial	in	Python	
def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)
OR	
def factorial(n):
 if n == 0:
 return 1
 return n * factorial(n-1)

	
15110 Principles of Computing,

Carnegie Mellon University - CORTINA 6

4

Fibonacci	Numbers	

•  A	sequence	of	numbers	such	that	each	number	is	
the	sum	of	the	previous	two	numbers	in	the	
sequence,	star6ng	the	sequence	with	0	and	1.	

•  0,	1,	1,	2,	3,	5,	8,	13,	21,	34,	55,	89,	etc.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 7

Recursive	Defini6on	

•  Let	fib(n)	=	the	nth	Fibonacci	number,	n	≥	0	
–  fib(0)	=	0 	 	(base	case)	
–  fib(1)	=	1 	 	(base	case)	
–  fib(n)	=	fib(n-1)	+	fib(n-2),	 	n	>	1	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 8

5

Recursive	Defini6on	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 9

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(1) fib(0)

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

Recursive	Defini6on	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 10

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(1) fib(0)

1

2

5

1 0

1 1

2

1 0

1

3

1 0

1

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

6

Fibonacci	Numbers	in	Python	
def fib(n):

 if n == 0 or n == 1:
 return n
 else:
 return fib(n-1) + fib(n-2)

In	python3,	let's	print	out	the	first	50	Fibonacci	numbers:	
for i in range(0,50):
 print(fib(i))

Why	does	it	take	longer	to	print	each	subsequent	value?	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 11

Compu6ng	the	sum	of	a	list	
def sum(numlist):

 n = len(numlist)
 if n == 0:
 return 0
 else:
 return numlist[0] + sum(numlist[1:n])

	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 12

Recursive case:
The sum of a list is the first element +
the sum of the rest of the list.

Base case:
The sum of an empty list is 0.

7

Towers	of	Hanoi	
•  A	puzzle	invented	by		

French	mathema6cian		
Edouard	Lucas	in	1883.	

•  At	a	temple	far	away,	priests	were	led	to	a	courtyard	with	
three	pegs	and	64	discs	stacked	on	one	peg	in	size	order.		
–  Priests	are	only	allowed	to	move	one	disc	at	a	6me	

from	one	peg	to	another.		
–  Priests	may	not	put	a	larger	disc	on	top	of	a	smaller	

disc	at	any	6me.	
•  The	goal	of	the	priests	was	to	move	all	64	discs	from	the	

lefmost	peg	to	the	rightmost	peg.	
•  According	to	the	story,	the	world	would	end	when	the	

priests	finished	their	work.		
15110 Principles of Computing,

Carnegie Mellon University - CORTINA 13

Towers of Hanoi
with 8 discs.

Towers	of	Hanoi	
Problem:	Move	n	discs	
from	peg	A	to	peg	C	using	peg	B.	
	
1.  Move	n-1	discs	from	peg	A	to	peg	B	

using	peg	C.	(recursive	step)	

2.  Move	1	disc	from	peg	A	to	peg	C.	
	
	

3.  Move	n-1	discs	from	peg	B	to	C	
using	peg	A.	(recursive	step)	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 14

A B C

A B C

A B C

A B C

8

Towers	of	Hanoi	in	Python	
(Assume	n	>=	0)	

def towers(n, from_peg, to_peg, using_peg):
 if n == 0:
 return # base case: do nothing
 else:
 towers(n-1, from_peg, using_peg, to_peg)
 print("Move disc from " + from_peg
 + " to " + to_peg)
 towers(n-1, using_peg, to_peg, from_peg)

In	python3	for	4	discs:		towers(4, "A", "C", "B")	
How	many	moves	do	the	priests	need	to	move	64	discs?	

	
15110 Principles of Computing,

Carnegie Mellon University - CORTINA 15

