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Insertion Sort Outline

def isort(datalist):
result = []
for value in datalist:
# insert value in its
# proper place in result
return result
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insert function

datalist.insert(position, value)

>>> a = [10, 30, 20]
>>> a

[10, 30, 20]

>>> a.insert (0, 15)
>>> a

[15, 10, 30, 20]
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insert function (cont'd)

>>> a.insert (2, 50)

>>> a

[15, 10, 50, 30, 20]

>>> a.insert (5, 40)

>>> a

[15, 10, 50, 30, 20, 40]

The insert function just inserts at the given index. It doesn't
assume the list is sorted.
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Insertion Sort, Refined

def isort(datalist):
result = []
for value in datalist:
# compute place to insert

result.insert(place, value)

return result

How do we find the right place to insert?
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gr_index

Compute the index of first element greater than item

def gr index(datalist, item):
# precondition: datalist is sorted!
index = 0
while index < len(datalist) and datalist[index] < item:
index = index + 1

return index
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Testing gr index

>>> a = [10, 20, 30, 40, 50]
>>> a

[10, 20, 30, 40, 50]
>>> gr_index(a, 3)

0

>>> gr_index(a, 14)
1

>>> gr_index(a, 37)
3

>>> gr_index(a, 99)
5
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Insertion Sort, Complete

def isort(datalist):
result = [ ]
for value in datalist:
place = gr_index(result, value)
result.insert(place, value)
return result
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Debugging Insertion Sort

def isort(list):

result = [ ]

print(result) # for debugging

for val in list:
place = gindex(result, val)
result.insert(place, val)
print(result) # for debugging

return result
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Testing isort

>>> isort([3, 1, 4, 1, 5, 9, 6, 2])
[]

[3]

[1, 3]

[1, 3, 4]

[1, 1, 3, 4]

[1, 1, 3, 4, 5]

[, 1, 3, 4, 5, 9]

[, 1, 3, 4, 5, 6, 9]

(r, 1, 2, 3, 4, 5, 6, 9]
=>I1,1, 2, 3, 4, 5, 6, 9]
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Can We Do Better?

* isort doesn’t change its input list.
* |Instead it makes a new list, called result.
* This takes twice as much memory.

e Can we write a destructive ("in place") version
of the algorithm that doesn’t use extra
memory?
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Destructive (In Place) Insertion Sort

Given a list L of length n, n > 0.
1. Seti=1.
2. While i is not equal to n, do the following:

a. Insert L[i] into its correct position in L
between indices 0 and i inclusive.

b. Add 1toi.
3. Return the list L which will now be sorted.
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General Idea: Any one Iteration

Insert L[i] into its correct position

in L between indices 0 and i inclusive.
(This causes subsequent values to
shift over.) Then add 1 to i.

L sorted L

Same basic picture!
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Insertion Sort in Python
("in place")

def isort(datalist): pop: remove the item at
i=1 position i in 1ist
while i < len(datalist): and store itin x
x = datalist.pop(1i)
index = 0
while index < i and datalist[index] < x:

index = index + 1 “\\\\

datalist.insert(index, x) Lookfamiliar?
This is essentially

i=1+1 gr_index, except it
return datalist stops at index i rather
than scanning the
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Look Closer at Insertion Sort

L[0..i) means:

Given a list L of length n, n > 0. tist C¥romiindex 0
) up to but not including i
1. Seti=1.

2. Whileiis not equal to n, do the following:

Precondition for each iteration: L[0..i) is sorted
a. Insert L[i] into its correct position in L between
index 0 and index i inclusive.
b.Add 1toi.
Postcondition for each iteration: L[0..i) is sorted
3. Return the list L which will now be sorted.
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Look Closer at Insertion Sort

Given a list L of length n, n > 0.
1. Seti=1.
2. Whileiis not equal to n, do the following:
Loop invariant: L[0..i) is sorted
a. Insert L[i] into its correct position in L between
index 0 and index i inclusive.
b.Add 1toi.

3. Return the list L which will now be sorted.

A loop invariant is a condition that is true at the start and end of
each iteration of a loop.
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Reasoning with the Loop Invariant

The loop invariant is true at the end of each iteration,
including the last iteration. After the last iteration, when
we go to step 3:

L[O..i) is sorted (from the last iteration)
AND
i is equal to n (due to the while loop terminating)

These 2 conditions imply that L[0..n) is sorted, but this
range is the entire list, so the list must always be sorted
when we return our final answer!
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