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UNIT	4B	
Itera,on:	Sor,ng	
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Sor,ng	
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Inser,on	Sort	Outline	

def isort(datalist):  
    result = []  
    for value in datalist:  
        # insert value in its  
        # proper place in result  
    return result"
!
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insert	func,on	

datalist.insert(position, value)"
"
>>> a = [10, 30, 20] 
>>> a 
[10, 30, 20] 
>>> a.insert(0, 15) 
>>> a 
[15, 10, 30, 20] 
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insert	func,on	(cont'd)	

>>> a.insert(2, 50) 
>>> a 
[15, 10, 50, 30, 20] 
>>> a.insert(5, 40) 
>>> a 
[15, 10, 50, 30, 20, 40] 
	

The	insert	func,on	just	inserts	at	the	given	index.	It	doesn't	
assume	the	list	is	sorted.	
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Inser,on	Sort,	Refined	

def isort(datalist):  
    result = []  
    for value in datalist:  
        # compute place to insert  
        result.insert(place, value)  
    return result"
!

How	do	we	find	the	right	place	to	insert?	
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gr_index	

Compute	the	index	of	first	element	greater	than	item	
!
def gr_index(datalist, item):"
# precondition: datalist is sorted!"
    index = 0"
    while index < len(datalist) and datalist[index] < item:"
        index = index + 1"
    return index!
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Tes,ng	gr_index"
>>> a = [10, 20, 30, 40, 50] 
>>> a 
[10, 20, 30, 40, 50] 
>>> gr_index(a, 3) 
0 
>>> gr_index(a, 14) 
1 
>>> gr_index(a, 37) 
3 
>>> gr_index(a, 99) 
5 
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Inser,on	Sort,	Complete	

 
def isort(datalist):  
  result = [ ]  
  for value in datalist:  
    place = gr_index(result, value)  
    result.insert(place, value)  
  return result"

!
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Debugging	Inser,on	Sort	
	
def isort(list):  
  result = [ ]  
  print(result)    # for debugging  
  for val in list:  
    place = gindex(result, val)  
    result.insert(place, val)  
    print(result)  # for debugging  
  return result!
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Tes,ng	isort	
 
>>> isort([3, 1, 4, 1, 5, 9, 6, 2]) 

 [] 
 [3] 
 [1, 3] 
 [1, 3, 4] 
 [1, 1, 3, 4] 
 [1, 1, 3, 4, 5] 
 [1, 1, 3, 4, 5, 9] 
 [1, 1, 3, 4, 5, 6, 9] 
 [1, 1, 2, 3, 4, 5, 6, 9] 
=> [1, 1, 2, 3, 4, 5, 6, 9] 
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Can	We	Do	BeOer?	

•  isort	doesn’t	change	its	input	list.	
•  Instead	it	makes	a	new	list,	called	result.	
•  This	takes	twice	as	much	memory.	
•  Can	we	write	a	destruc,ve	("in	place")	version	
of	the	algorithm	that	doesn’t	use	extra	
memory?	
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Destruc,ve	(In	Place)	Inser,on	Sort	

Given	a	list	L	of	length	n,	n	>	0.	
1.  Set	i	=	1.	
2.  While	i	is	not	equal	to	n,	do	the	following:	

	a.	Insert	L[i]	into	its	correct	posi,on	in	L	
					between	indices	0	and	i	inclusive.	
	b.	Add	1	to	i.	

3. 	Return	the	list	L	which	will	now	be	sorted.	
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General	Idea:	Any	one	Itera,on	
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SORTED	

SORTED	
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Insert L[i] into its correct position  
in L between indices 0 and i inclusive. 
(This causes subsequent values to 
shift over.) Then add 1 to i. 

Same basic picture! 
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Inser,on	Sort	in	Python	
("in	place")	

def isort(datalist):"
    i = 1"
    while i < len(datalist):"
        x = datalist.pop(i)"
        index = 0"
        while index < i and datalist[index] < x:"
            index = index + 1"
        datalist.insert(index, x)"
        i = i + 1"
    return datalist"

" ""
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pop: remove the item at 
position i in list"
and store it in x"

Look familiar? 
This is essentially 
gr_index, except it 
stops at index i rather 
than scanning the 
whole list! 
 

Look	Closer	at	Inser,on	Sort	

Given	a	list	L	of	length	n,	n	>	0.	
1.  Set	i	=	1.	
2.  While	i	is	not	equal	to	n,	do	the	following:	

	Precondi)on	for	each	itera)on:	L[0..i)	is	sorted	
	a.	Insert	L[i]	into	its	correct	posi,on	in	L	between	

											index	0	and	index	i	inclusive.	
	b.	Add	1	to	i.	
	Postcondi)on	for	each	itera)on:	L[0..i)	is	sorted	

3. 	Return	the	list	L	which	will	now	be	sorted.	
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L[0..i)	means:	
List	L	from	index	0	
up	to	but	not	including	i	
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Look	Closer	at	Inser,on	Sort	
Given	a	list	L	of	length	n,	n	>	0.	
1.  Set	i	=	1.	
2.  While	i	is	not	equal	to	n,	do	the	following:	

	Loop	invariant:	L[0..i)	is	sorted	
	a.	Insert	L[i]	into	its	correct	posi,on	in	L	between	

											index	0	and	index	i	inclusive.	
	b.	Add	1	to	i.	

3.  Return	the	list	L	which	will	now	be	sorted.	
A	loop	invariant	is	a	condi)on	that	is	true	at	the	start	and	end	of	

each	itera)on	of	a	loop.	
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Reasoning	with	the	Loop	Invariant	

The	loop	invariant	is	true	at	the	end	of	each	itera,on,	
including	the	last	itera,on.	Aber	the	last	itera,on,	when	
we	go	to	step	3:	

	L[0..i)	is	sorted	(from	the	last	itera,on)	
	AND		
	i	is	equal	to	n	(due	to	the	while	loop	termina,ng)	

These	2	condi,ons	imply	that	L[0..n)	is	sorted,	but	this	
range	is	the	en,re	list,	so	the	list	must	always	be	sorted	
when	we	return	our	final	answer!	
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