
1

UNIT	4B	
Itera,on:	Sor,ng	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 1

Sor,ng	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 2

2

Inser,on	Sort	Outline	

def isort(datalist):  
 result = []  
 for value in datalist:  
 # insert value in its  
 # proper place in result  
 return result"
!

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 3

insert	func,on	

datalist.insert(position, value)"
"
>>> a = [10, 30, 20]
>>> a
[10, 30, 20]
>>> a.insert(0, 15)
>>> a
[15, 10, 30, 20]
	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 4

3

insert	func,on	(cont'd)	

>>> a.insert(2, 50)
>>> a
[15, 10, 50, 30, 20]
>>> a.insert(5, 40)
>>> a
[15, 10, 50, 30, 20, 40]
	

The	insert	func,on	just	inserts	at	the	given	index.	It	doesn't	
assume	the	list	is	sorted.	
	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 5

Inser,on	Sort,	Refined	

def isort(datalist):  
 result = []  
 for value in datalist:  
 # compute place to insert  
 result.insert(place, value)  
 return result"
!

How	do	we	find	the	right	place	to	insert?	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 6

4

gr_index	

Compute	the	index	of	first	element	greater	than	item	
!
def gr_index(datalist, item):"
precondition: datalist is sorted!"
 index = 0"
 while index < len(datalist) and datalist[index] < item:"
 index = index + 1"
 return index!

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 7

Tes,ng	gr_index"
>>> a = [10, 20, 30, 40, 50]
>>> a
[10, 20, 30, 40, 50]
>>> gr_index(a, 3)
0
>>> gr_index(a, 14)
1
>>> gr_index(a, 37)
3
>>> gr_index(a, 99)
5

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 8

5

Inser,on	Sort,	Complete	

 
def isort(datalist):  
 result = []  
 for value in datalist:  
 place = gr_index(result, value)  
 result.insert(place, value)  
 return result"

!

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 9

Debugging	Inser,on	Sort	
	
def isort(list):  
 result = []  
 print(result) # for debugging  
 for val in list:  
 place = gindex(result, val)  
 result.insert(place, val)  
 print(result) # for debugging  
 return result!

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 10

6

Tes,ng	isort	

>>> isort([3, 1, 4, 1, 5, 9, 6, 2])

 []
 [3]
 [1, 3]
 [1, 3, 4]
 [1, 1, 3, 4]
 [1, 1, 3, 4, 5]
 [1, 1, 3, 4, 5, 9]
 [1, 1, 3, 4, 5, 6, 9]
 [1, 1, 2, 3, 4, 5, 6, 9]
=> [1, 1, 2, 3, 4, 5, 6, 9]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 11

Can	We	Do	BeOer?	

•  isort	doesn’t	change	its	input	list.	
•  Instead	it	makes	a	new	list,	called	result.	
•  This	takes	twice	as	much	memory.	
•  Can	we	write	a	destruc,ve	("in	place")	version	
of	the	algorithm	that	doesn’t	use	extra	
memory?	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 12

7

Destruc,ve	(In	Place)	Inser,on	Sort	

Given	a	list	L	of	length	n,	n	>	0.	
1.  Set	i	=	1.	
2.  While	i	is	not	equal	to	n,	do	the	following:	

	a.	Insert	L[i]	into	its	correct	posi,on	in	L	
					between	indices	0	and	i	inclusive.	
	b.	Add	1	to	i.	

3. 	Return	the	list	L	which	will	now	be	sorted.	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 13

General	Idea:	Any	one	Itera,on	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 14

SORTED	

SORTED	

	
	

i

i

L

L

Insert L[i] into its correct position
in L between indices 0 and i inclusive.
(This causes subsequent values to
shift over.) Then add 1 to i.

Same basic picture!

8

Inser,on	Sort	in	Python	
("in	place")	

def isort(datalist):"
 i = 1"
 while i < len(datalist):"
 x = datalist.pop(i)"
 index = 0"
 while index < i and datalist[index] < x:"
 index = index + 1"
 datalist.insert(index, x)"
 i = i + 1"
 return datalist"

" ""
15110 Principles of Computing,

Carnegie Mellon University - CORTINA 15

pop: remove the item at
position i in list"
and store it in x"

Look familiar?
This is essentially
gr_index, except it
stops at index i rather
than scanning the
whole list!

Look	Closer	at	Inser,on	Sort	

Given	a	list	L	of	length	n,	n	>	0.	
1.  Set	i	=	1.	
2.  While	i	is	not	equal	to	n,	do	the	following:	

	Precondi)on	for	each	itera)on:	L[0..i)	is	sorted	
	a.	Insert	L[i]	into	its	correct	posi,on	in	L	between	

											index	0	and	index	i	inclusive.	
	b.	Add	1	to	i.	
	Postcondi)on	for	each	itera)on:	L[0..i)	is	sorted	

3. 	Return	the	list	L	which	will	now	be	sorted.	
15110 Principles of Computing,

Carnegie Mellon University - CORTINA 16

L[0..i)	means:	
List	L	from	index	0	
up	to	but	not	including	i	

9

Look	Closer	at	Inser,on	Sort	
Given	a	list	L	of	length	n,	n	>	0.	
1.  Set	i	=	1.	
2.  While	i	is	not	equal	to	n,	do	the	following:	

	Loop	invariant:	L[0..i)	is	sorted	
	a.	Insert	L[i]	into	its	correct	posi,on	in	L	between	

											index	0	and	index	i	inclusive.	
	b.	Add	1	to	i.	

3.  Return	the	list	L	which	will	now	be	sorted.	
A	loop	invariant	is	a	condi)on	that	is	true	at	the	start	and	end	of	

each	itera)on	of	a	loop.	
15110 Principles of Computing,

Carnegie Mellon University - CORTINA 17

Reasoning	with	the	Loop	Invariant	

The	loop	invariant	is	true	at	the	end	of	each	itera,on,	
including	the	last	itera,on.	Aber	the	last	itera,on,	when	
we	go	to	step	3:	

	L[0..i)	is	sorted	(from	the	last	itera,on)	
	AND		
	i	is	equal	to	n	(due	to	the	while	loop	termina,ng)	

These	2	condi,ons	imply	that	L[0..n)	is	sorted,	but	this	
range	is	the	en,re	list,	so	the	list	must	always	be	sorted	
when	we	return	our	final	answer!	

15110 Principles of Computing,
Carnegie Mellon University - CORTINA 18

