00000000
PR
aaaaln’s’s

UNIT 4B
lteration: Sorting

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Sort by Sort by: | Best Match El
IS . Time: ending soonest
IDESCRIPTION j' ~ gscendln-g Time: newly listed
Descending Price + P&P: lowest first
Then by Price + P&P: highest first
Iﬁ & Ascending Price: lowest first
_ 1 Price: highest first
N Artist | nearest first
@ Dig Your Grave Modest Mouse 12 ' i =
I [#] Ostriches & Chirping Elliott Smith 0:33 ! fzlsed s
[Interlude (Milo) Modest Mouse 0:58
My list ha P we o -
[we've Got a File On... Blur 1:02 N
m YouIlf oo
[#) Fewer Words Badly Drawn ... =~ 1:13
@ Life's Incredible Ag... Michael Giacc... 1:24 Search results for amd
Optior| [30 Century Man Scott Walker 1:26 About 83,600 resuts
@ Lava In the Afterno... Michael Giacc... 1:29 2 search options
[The Chase Stephen Trask = 1:31 esuittype- Sortby:
o h | id Th bi 7 Al Relevance
@ The Way | Feel Inside e Zombies 1:34 Videos
[Mr. Huph will See ... Michael Giacc... 1:35 | ¥ Channels View count
— Playlists Rating
[# Don't Ask Me I'm O... BadlyDrawn ... 1:36 4
[T Let Me Tell You Ab... |Mark Mothers... 1:38 .Y L_

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Insertion Sort Outline

def isort(datalist):
result = []
for value in datalist:
insert value in its
proper place in result
return result

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

insert function

datalist.insert(position, value)

>>> a = [10, 30, 20]
>>> a

[10, 30, 20]

>>> a.insert (0, 15)
>>> a

[15, 10, 30, 20]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

insert function (cont'd)

>>> a.insert (2, 50)

>>> a

[15, 10, 50, 30, 20]

>>> a.insert (5, 40)

>>> a

[15, 10, 50, 30, 20, 40]

The insert function just inserts at the given index. It doesn't
assume the list is sorted.

15110 Principles of Computing, 5
Carnegie Mellon University - CORTINA -

Insertion Sort, Refined

def isort(datalist):
result = []
for value in datalist:
compute place to insert

result.insert(place, value)

return result

How do we find the right place to insert?

15110 Principles of Computing, 5
Carnegie Mellon University - CORTINA

gr_index

Compute the index of first element greater than item

def gr index(datalist, item):
precondition: datalist is sorted!
index = 0
while index < len(datalist) and datalist[index] < item:
index = index + 1

return index

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Testing gr index

>>> a = [10, 20, 30, 40, 50]
>>> a

[10, 20, 30, 40, 50]
>>> gr_index(a, 3)

0

>>> gr_index(a, 14)
1

>>> gr_index(a, 37)
3

>>> gr_index(a, 99)
5

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Insertion Sort, Complete

def isort(datalist):
result = []
for value in datalist:
place = gr_index(result, value)
result.insert(place, value)
return result

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Debugging Insertion Sort

def isort(list):

result = []

print(result) # for debugging

for val in list:
place = gindex(result, val)
result.insert(place, val)
print(result) # for debugging

return result

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Testing isort

>>> isort([3, 1, 4, 1, 5, 9, 6, 2])
[]

[3]

[1, 3]

[1, 3, 4]

[1, 1, 3, 4]

[1, 1, 3, 4, 5]

[, 1, 3, 4, 5, 9]

[, 1, 3, 4, 5, 6, 9]

(r, 1, 2, 3, 4, 5, 6, 9]
=>I1,1, 2, 3, 4, 5, 6, 9]

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Can We Do Better?

* isort doesn’t change its input list.
* |Instead it makes a new list, called result.
* This takes twice as much memory.

e Can we write a destructive ("in place") version
of the algorithm that doesn’t use extra
memory?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Destructive (In Place) Insertion Sort

Given a list L of length n, n > 0.
1. Seti=1.
2. While i is not equal to n, do the following:

a. Insert L[i] into its correct position in L
between indices 0 and i inclusive.

b. Add 1toi.
3. Return the list L which will now be sorted.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

General Idea: Any one Iteration

Insert L[i] into its correct position

in L between indices 0 and i inclusive.
(This causes subsequent values to
shift over.) Then add 1 to i.

L sorted L

Same basic picture!

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Insertion Sort in Python
("in place")

def isort(datalist): pop: remove the item at
i=1 position i in 1ist
while i < len(datalist): and store itin x
x = datalist.pop(1i)
index = 0
while index < i and datalist[index] < x:

index = index + 1 “\\\\

datalist.insert(index, x) Lookfamiliar?
This is essentially

i=1+1 gr_index, except it
return datalist stops at index i rather
than scanning the

15110 Principles of Computing, WhOIe IISt!

Carnegie Mellon University - CORTINA 15

Look Closer at Insertion Sort

L[0..i) means:

Given a list L of length n, n > 0. tist C¥romiindex 0
) up to but not including i
1. Seti=1.

2. Whileiis not equal to n, do the following:

Precondition for each iteration: L[0..i) is sorted
a. Insert L[i] into its correct position in L between
index 0 and index i inclusive.
b.Add 1toi.
Postcondition for each iteration: L[0..i) is sorted
3. Return the list L which will now be sorted.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Look Closer at Insertion Sort

Given a list L of length n, n > 0.
1. Seti=1.
2. Whileiis not equal to n, do the following:
Loop invariant: L[0..i) is sorted
a. Insert L[i] into its correct position in L between
index 0 and index i inclusive.
b.Add 1toi.

3. Return the list L which will now be sorted.

A loop invariant is a condition that is true at the start and end of
each iteration of a loop.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Reasoning with the Loop Invariant

The loop invariant is true at the end of each iteration,
including the last iteration. After the last iteration, when
we go to step 3:

L[O..i) is sorted (from the last iteration)
AND
i is equal to n (due to the while loop terminating)

These 2 conditions imply that L[0..n) is sorted, but this
range is the entire list, so the list must always be sorted
when we return our final answer!

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

