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UNIT 2B
An Introduction to Programming
(for loops)
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for Loop (simple version)

for loop_variable in range(n):
loop body

The loop variable is a new variable name
The loop body is one or more instructions that you
want to repeat.

If n >0, the for loop repeats the loop body n
times.

If n <=0, the entire loop is skipped.
Remember to indent loop body
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for Loop Example

for i in range (5):
print ("hello world")

hello world
hello world
hello world
hello world
hello world
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What Happens to Loop Variable?

for 1 in range(5):
print (1)

s w N kO
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Detour: some printing options

for i in range(5):

print (i, [end=" ")

01234 Blank space after value printed

for 1 in range(5):

print (i, end=""
01234 \ No space after value printed ‘

for i in range(10):

print (i*2, end=" ")
0246 8 10 12 14 16 18
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Changing the range

for i in range (1, 6):
print (i, end=" ")

1 2 3 45 /lncreasebyZeacht‘ime

for j in |[range (1, 6, 2)|:
print (j, end=" ")
1 35

for k in range( )t
print (k, end=" ")
511 17 23 29 35
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Reminder: Assignment Statements

variable = expression

The expression is evaluated and the
result is stored in the variable
* overwrites the previous contents of variable.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Variables change over time

statement value of x value of y
x = 150 150 ?

y = x * 10 150 1500

y =y + 1 150 1501

X = x + vy 1651 1501
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Accumulating an answer

def compute sum() :
# sums first 5 positive integers

sum = 0
for i in range (1, 6):
sum = sum + 1

return sum

compute sum ()
=> 15
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Accumulating an answer

def compute sum() :
# sums first 5 positive integers

sum = 0
for i in range(l, 6):
sum = sum + i

return sum

i sum
initialize sum ? 0
iteration 1 1 1
iteration 2 2 3
iteration 3 3 6
iteration 4 4 10
iteration 5 5 15
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Generalizing sum

def compute sum(n) :
# sums the first n positive integers
sum = 0
for 1 in range(l, n + 1):
sum = sum + 1
return sum

compute sum(6) => 21
compute sum(100) => 5050
compute sum(15110) => 114163605
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Danger! Don’t change the loop variable!

for i in range (5):
print (i, end=" ")

Even if you modify the loop

01 2 3 4 variable in the loop, it will be
reset to its next expected
value in the next iteration.

for i in range(1l,6):

\i =1 * 2 \ NEVER modify the loop
print (i, end=" ") variableinside a for loop.

2 4 6 8 10 Q
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Accumulation by multiplying as
well as by adding

An epidemic:

def compute sick(n):

# computes

total sick =1
newly sick =1
for day in range (2,

# each

newly sick =
total sick =
return total

newl

sick

total sick after n days

n+ 1):
iteration represents one day

y sick * 2 €

total sick + newly sick

Each newly infected person
infects 2 people the next day.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

An epidemic (cont’ d)

compute sick(
compute sick(
compute sick(
compute sick(
compute sick(
compute sick(
compute:sick(
compute sick(
compute sick(
compute sick(
compute sick(
compute:sick(
compute sick(
compute sick(
compute sick(
compute sick(

—_— — — — — — —

=> 1

=> 3

=> 7

15

31

63
127
255
511
1023
2047
4095
8191
16383
32767
65535

compute sick
compute sick
compute sick
compute sick
compute sick

=> 131071
> 262143
=> 524287
> 1048575
=> 2097151

In just three weeks, over
2 million people are sick!
(This is what Blown To Bits
means by exponential growth.
We will see important
computational problems that
get exponentially “harder” as
the problems gets bigger.)
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Countdown

import time
def countdown () : Why can’ t we justuse 10, 0

for i in range (1, 11)|hereandprinti instead?
print (11 - 1)

time.sleep(lﬁ\# pauses for 1 sec.

countdown () | This value gets smaller as i gets bigger. |
=10
— 9
— 8
— 1
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Countdown! (an easier way)

import time | Now 1 gets smaller at each iteration. |
def countdown () : f///
for i inlrange (10, 0, -1):
print (i)

time.sleep(l) # pauses for 1 sec.

countdown ()
=10
= 9
= 8

= 1
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