ittt
OIS

UNIT 2B
An Introduction to Programming
(for loops)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

for Loop (simple version)

for loop_variable in range(n):
loop body

The loop variable is a new variable name
The loop body is one or more instructions that you
want to repeat.

If n >0, the for loop repeats the loop body n
times.

If n <=0, the entire loop is skipped.
Remember to indent loop body

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

for Loop Example

for i in range (5):
print ("hello world")

hello world
hello world
hello world
hello world
hello world

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

What Happens to Loop Variable?

for 1 in range(5):
print (1)

s w N kO

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Detour: some printing options

for i in range(5):

print (i, [end=" ")

01234 Blank space after value printed

for 1 in range(5):

print (i, end=""
01234 \ No space after value printed ‘

for i in range(10):

print (i*2, end=" ")
0246 8 10 12 14 16 18

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Changing the range

for i in range (1, 6):
print (i, end=" ")

1 2 3 45 /lncreasebyZeacht‘ime

for j in |[range (1, 6, 2)|:
print (j, end=" ")
1 35

for k in range()t
print (k, end=" ")
511 17 23 29 35

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Reminder: Assignment Statements

variable = expression

The expression is evaluated and the
result is stored in the variable
* overwrites the previous contents of variable.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Variables change over time

statement value of x value of y
x = 150 150 ?

y = x * 10 150 1500

y =y + 1 150 1501

X = x + vy 1651 1501

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Accumulating an answer

def compute sum() :
sums first 5 positive integers

sum = 0
for i in range (1, 6):
sum = sum + 1

return sum

compute sum ()
=> 15

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Accumulating an answer

def compute sum() :
sums first 5 positive integers

sum = 0
for i in range(l, 6):
sum = sum + i

return sum

i sum
initialize sum ? 0
iteration 1 1 1
iteration 2 2 3
iteration 3 3 6
iteration 4 4 10
iteration 5 5 15

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Generalizing sum

def compute sum(n) :
sums the first n positive integers
sum = 0
for 1 in range(l, n + 1):
sum = sum + 1
return sum

compute sum(6) => 21
compute sum(100) => 5050
compute sum(15110) => 114163605

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Danger! Don’t change the loop variable!

for i in range (5):
print (i, end=" ")

Even if you modify the loop

01 2 3 4 variable in the loop, it will be
reset to its next expected
value in the next iteration.

for i in range(1l,6):

\i =1 * 2 \ NEVER modify the loop
print (i, end=" ") variableinside a for loop.

2 4 6 8 10 Q

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Accumulation by multiplying as
well as by adding

An epidemic:

def compute sick(n):

computes

total sick =1
newly sick =1
for day in range (2,

each

newly sick =
total sick =
return total

newl

sick

total sick after n days

n+ 1):
iteration represents one day

y sick * 2 €

total sick + newly sick

Each newly infected person
infects 2 people the next day.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

An epidemic (cont’ d)

compute sick(
compute sick(
compute sick(
compute sick(
compute sick(
compute sick(
compute:sick(
compute sick(
compute sick(
compute sick(
compute sick(
compute:sick(
compute sick(
compute sick(
compute sick(
compute sick(

—_— — — — — — —

=> 1

=> 3

=> 7

15

31

63
127
255
511
1023
2047
4095
8191
16383
32767
65535

compute sick
compute sick
compute sick
compute sick
compute sick

=> 131071
> 262143
=> 524287
> 1048575
=> 2097151

In just three weeks, over
2 million people are sick!
(This is what Blown To Bits
means by exponential growth.
We will see important
computational problems that
get exponentially “harder” as
the problems gets bigger.)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Countdown

import time
def countdown () : Why can’ t we justuse 10, 0

for i in range (1, 11)|hereandprinti instead?
print (11 - 1)

time.sleep(lﬁ\# pauses for 1 sec.

countdown () | This value gets smaller as i gets bigger. |
=10
— 9
— 8
— 1
15110 Principles of Computing, 15

Carnegie Mellon University - CORTINA

Countdown! (an easier way)

import time | Now 1 gets smaller at each iteration. |
def countdown () : f///
for i inlrange (10, 0, -1):
print (i)

time.sleep(l) # pauses for 1 sec.

countdown ()
=10
= 9
= 8

= 1

15110 Principles of Computing, 16
Carnegie Mellon University - CORTINA

