

UNIT 1 An Introduction to Computing

The History of Computing

15110 Principles of Computing, Carnegie Mellon University - CORTINA

1

The Abacus

Chinese abacus

- $\bullet \;$ Earliest archaeological evidence of a Greek abacus used around the 5^{th} century BC.
- Earliest documents illustrating the use of the Chinese abacus (suan pan) from the 13th century AD.
- Other abacus forms: Soroban (Japan), Choreb (Afghanistan), Schoty (or stchoty) (Russia)

15110 Principles of Computing, Carnegie Mellon University - CORTINA

John Napier

- Scottish mathematician (1550-1617)
- Invented Napier's Bones, used to perform multiplication using only addition.
- Napier is also the inventor of logarithms.
- Napier's bones were very successful and were widely used in Europe until mid 1960 's.

15110 Principles of Computing, Carnegie Mellon University - CORTINA

3

Pascaline (1643) Leibniz' machine (1674) 15110 Principles of Computing, Carnegie Mellon University - CORTINA

Jacquard's Loom (1805)

Developed by Joseph-Marie Jacquard. The loom was controlled by a loop of punched cards. Holes in the punched cards determined how the knitting proceeded, yielding very complex weaves at a much faster rate.

from Columbia University Computing History http://www.columbia.edu/ acis/history/jacquard.html

15110 Principles of Computing, Carnegie Mellon University - CORTINA

5

Charles Babbage

- Mathematician, industrialist, philosopher, politician
- Difference Engine (1822)
 - Babbage's first computational machine was based on the method of finite differences.
 - He only built a small prototype.
- Analytical Engine (1834-1836)
 - Babbage's more general "computer"
 - Never built, but its design is considered to be the foundation of modern computing.

15110 Principles of Computing, Carnegie Mellon University - CORTINA

Difference Engine:

How it works: Method of Finite Differences

- $f(x) = x^2 + x + 1$
- First order difference Δf(x)

$$= f(x+1) - f(x) = (x+1)^2 + (x+1) + 1 - (x^2 + x + 1) = 2x + 2$$

• Second order difference $\Delta^2 f(x)$

$$= \Delta f(x+1) - \Delta f(x) = 2(x+1) + 2 - (2x + 2) = 2$$

• Given: f(0) = 1, $\Delta f(0) = 2$, $\Delta^2 f(0) = 2$ (note: all $\Delta^2 f(x) = 2$)

$$-\Delta f(1) = \Delta f(0) + \Delta^2 f(0) = 2 + 2 = 4$$

$$f(1) = f(0) + \Delta f(0) = 1 + 2 = 3$$
 $(f(1) = 1^2 + 1 + 1 = 3)$

$$-\Delta f(2) = \Delta f(1) + \Delta^2 f(1) = 4 + 2 = 6$$

$$f(2) = f(1) + \Delta f(1) = 3 + 4 = 7$$
 $(f(2) = 2^2 + 2 + 1 = 7)$

15110 Principles of Computing, Carnegie Mellon University - CORTINA

7

Method of Finite Differences

- $f(x) = x^2 + x + 1$
- $\Delta f(x) = 2x + 2$
- $\Delta^2 f(x) = 2$

Х	$\Delta^2 f(x)$	Δf(x)	f(x)
0	2 _	+ 12 ~	+ 1
1	2	**************************************	+ 3
2	2 _	+6	+ 17
3	2	3 48	13

15110 Principles of Computing, Carnegie Mellon University - CORTINA

Method of Finite Differences

- $f(x) = 4x^2 + 9$
- $\Delta f(x) = f(x+1) f(x) =$
- $\Delta^2 f(x) = \Delta f(x+1) \Delta f(x) =$

Х	$\Delta^2 f(x)$	$\Delta f(x)$	f(x)
0			
1			
2			
3			

15110 Principles of Computing, Carnegie Mellon University - CORTINA

9

Babbage's Difference Engine

Photo of the 1832 Fragment of a Difference Engine

photo of Babbage Difference Engine No. 2 constructed in 1991

15110 Principles of Computing, Carnegie Mellon University - CORTINA

Babbage's Difference Engine

http://www.culture.com.au/brain_proj/CONTENT/BABBAGE.HTM

15110 Principles of Computing, Carnegie Mellon University - CORTINA

11

Ada Lovelace

- 1815-1852
- Daughter of poet Lord Byron
- Translated Menabrea's Sketch of the Analytical Engine to English
 - Quadrupled its length by adding lengthy notes and detailed mathematical explanations
- Referred to as the world's first programmer
 - Described how the machine might be configured (programmed) to solve a variety of problems.

15110 Principles of Computing, Carnegie Mellon University - CORTINA

Herman Hollerith

& The Hollerith Census Machine

- 1880 U.S. Census
 - The amount of data that needed to be analyzed was growing so quickly due to immigration

- Required almost a decade to compute 1880 Census
- In 1882, Hollerith investigated a suggestion by Dr. John Shaw Billings, head of the division of Vital Statistics for the Census Bureau
 - "There ought to be some mechanical way of [tabulating Census data], something on the principle of the Jacquard loom, whereby holes in a card regulate the pattern to be woven."

15110 Principles of Computing, Carnegie Mellon University - CORTINA

13

Hollerith's Census Machine

Photo: IBM

15110 Principles of Computing, Carnegie Mellon University - CORTINA

Hollerith's Census Machine

Photo of a punch card for the Hollerith machine, from *John McPherson, Computer Engineer*, an oral history conducted in 1992 by William Aspray, IEEE History Center, Rutgers University, New Brunswick, NJ, USA.

was published in 1892.

- Total population of the U.S.: 62,622,250

15110 Principles of Computing, Carnegie Mellon University - CORTINA

15

Hollerith's Census Machine

Photo from 1920 Census: Austrian, Geoffrey, Herman Hollerith: Forgotten Giant of Information Processing, Columbia University Press (1982).

15110 Principles of Computing, Carnegie Mellon University - CORTINA

The Birth of IBM

.

 Hollerith forms the Tabulating Machine Company in 1896 which eventually becomes IBM in 1924 through a merger and several name changes.

> 15110 Principles of Computing, Carnegie Mellon University - CORTINA

17

ENIAC

Electronic Numerical Integrator and Computer

 Collaboration between Moore School of Electrical Engineering at the University of Pennsylvania and the Ballistic Research Laboratory in Aberdeen, MD

from www.computer.org

- Designed by John W. Mauchley and J. Presper Eckert
- In 1943, the Ordinance Dept. signs a contract for UPenn to develop an electronic computer to solve differential equations for ballistic trajectories
- Constructed completed in the fall of 1945 after WWII ends, and dedicated in February 1946.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

ENIACElectronic Numerical Integrator and Computer

(Virginia Tech – History of Computing)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

19

UNIVAC and the First Compiled Programming Language

- UNIVACI
 - Built by Remington Rand to compute 1950 U.S. census but completed in 1951
 - Used to predict the winner of the 1952 U.S. Presidential Election based on ~3.4M votes
- J. Presper Eckert and Walter Cronkite (CBS) next to the UNIVAC in 1952 (Center for the Study of Technology and Society)
- A-0 was a programming language for the UNIVAC I or II
- A-0 was the first language for which a compiler was developed, produced by a team led by Admiral Grace Hopper.
 - the premier conference for women in computing is named after Grace Hopper

Admiral Grace Hopper

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

The Integrated Circuit

- The Cold War and the Space Race led to many advancements in the 1950s and 1960s including miniaturization and automation.
- Robert Noyce and Jack Kilby are credited with the invention of the integrated circuit (IC) or microchip.
 - Kilby wins Nobel Prize in Physics in 2000.
 - Robert Noyce co-founded Intel in 1968.
- By the mid 1970s, ICs contained tens of thousands of transistors per chip.
 - In 1970, Intel created the 1103--the first generally available DRAM (Dynamic Random Access Memory) chip.

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

21

Units of Memory

- Byte В 8 bits (8b) = 2¹⁰ bytes 1024 B ≈ 10^3 bytes Kilobyte KΒ = 2²⁰ bytes Megabyte MB 1024 KB ≈ 10^6 bytes $= 2^{30}$ bytes Gigabyte GB 1024 MB ≈ 10^9 bytes Terabyte ΤB 1024 GB = 2⁴⁰ bytes ≈ 10¹² bytes = 2⁵⁰ bytes ≈ 10¹⁵ bytes Petabyte PB 1024 TB
- How many bytes can be stored in a 4GB flash drive?
- How many bytes/second is a 16Mbps cable modem connection?

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

How Time Flies...

Commodore 64 (1982) 40cm X 22 cm X 8 cm 64KB of IC memory \$595

Definitely not to scale

MicroSD Card (2017) 15mm X 11mm X 1mm 32GB of flash memory \$14 (includes adapter!)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

23

Moore's Law

• Gordon Moore co-founded Intel Corporation in 1968.

- Famous for his prediction on the growth of the semiconductor industry: Moore's Law
 - An empirical observation stating in effect that the complexity of integrated circuits doubles every 24 months. ("complexity" generally means number of transistors on a chip)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

The GUI

Graphical User Interface

- Concept born at SRI in the early 1960s
- Major development at Xerox PARC in late 70s
- Apple Macintosh, founded by Steve Jobs and his friend Steve Wozniak, introduced in 1984 with full GUI operating system
- Microsoft is founded by Bill Gates and Paul G. Allen with sales of Microsoft BASIC
 - develops its own window-based operating system soon afterwards based on Apple's design... many lawsuits follow
- Even IBM jumps into the fray with OS/2

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

27

The GUI

Graphical User Interface

Macintosh OS

Microsoft Windows 1.0

15-105 Principles of Computation, Carnegie Mellon University - CORTINA

More History to Come...

- Alan Turing
 - Computability
 - Enigma machine (encryption)
 - Artificial Intelligence
- The birth of the Internet and the World Wide Web

Alan Turing

Tim Berners-Lee (inventor of WWW)

15-105 Principles of Computation, Carnegie Mellon University - CORTINA