
	 Page	1	

15-110:	Principles	of	Computing,	Spring	2018	
	

Lab	9	–	Thursday,	March	29	
	

Goals	
	
This	lab	is	intended	to	develop	your	understanding	of	doing	simple	graphics	with	Python.	We	will	
be	using	the	module	tkinter	to	create	simple	computer	graphics	on	the	screen.	We	will	also	be	
using	the	module	random	to	generate	random	colors	for	the	shapes	we	draw.	After	we	learn	how	
to	draw	rectangles,	we	introduce	the	concept	of	a	fractal	in	the	last	question	and	make	you	
observe	the	recursive	nature	of	fractals.	That	part	is	mainly	intended	to	make	you	think	recursively	
and	enjoy	a	beautiful	application	of	recursion.	
	
When	you	are	done	with	this	lab,	you	should	be	able	to	do	the	following:	
	

1. Initialize	a	canvas	of	a	certain	size	
2. Explain	how	the	coordinate	system	works	
3. Draw	rectangles	on	the	canvas,	possibly	with	borders,	and	possibly	filled	with	color	
4. Use	the	module	random	to	generate	random	integers	
5. Use	the	module	random	to	choose	random	elements	from	a	given	list	
6. Explain	the	effect	of	using	a	seed	for	a	pseudorandom	number	generator	

	

Part	1:	TA	Demonstrations	(Graphics	in	Python)	

• Review	the	graphics	coordinate	system	
• Review	graphicsdemo.py	
• Review	how	to	use	randint	

NOTE:	If	the	graphics	module	is	not	installed	on	the	Andrew	servers	(try	to	import	tkinter	in	
interactive	mode),	then	allow	students	to	use	their	own	Python	3	installation	on	their	laptop	if	they	
used	the	default	installation.	Students	may	partner	together	in	this	case.	Additionally,	if	the	TA	has	
a	laptop,	he	or	she	can	lead	the	class	together	to	work	on	the	problems	on	the	screen.	

	 	

	 Page	2	

Self-Directed	Activities	
	

1. Random	colorful	boxes	
	

Write	a	Python	function	random_boxes()in	the	file	random_boxes.py	that	creates	a	
window	of	size	320	by	320	and	draws	a	40	by	40	grid	of	8	by	8	squares,	each	colored	a	
random	color	from	black,	white,	yellow,	cyan,	and	magenta.	Be	sure	to	include	the	correct	
import	statements	before	your	function	in	the	file.	Look	at	graphicsdemo.py	from	
class:	all	you	need	to	do	is	edit	it	a	little!	

	
Your	exact	color	results	will	vary	since	we	are	using	a	random	number	generator	and	we	do	
not	expect	you	to	seed	the	random	number	generator	to	fix	the	sequence	of	numbers	that	
it	will	generate.	
	
Sample	usage:	
	
> python3 –i random_boxes.py
>>> random_boxes()
	

	
	
(Note	how	the	left	column	and	row	get	cut	off	a	little	due	to	the	graphics	module.	
Can	you	tweak	the	code	so	you	can	see	the	whole	picture?	Hint:	Make	the	window	a	little	
bigger,	and	add	a	small	offset	to	each	coordinate	to	shift	the	picture	to	the	right	and	down.)	
	

2. Matrix	colors	
	

Write	a	function	data_display(matrix)	that	takes	a	4	by	4	matrix	(list	of	lists)	as	its	
parameter	and	displays	a	4	by	4	grid	of	80	by	60	rectangles	in	a	window	of	size	320	(width)	
by	240	(height)	based	on	the	data	in	the	input	matrix	.	If	the	value	in	a	matrix	cell	is	odd,	
draw	a	yellow	rectangle	in	its	grid	location	in	the	window	and	if	the	value	in	a	matrix	cell	is	
even,	draw	a	blue	rectangle	in	its	grid	location	in	the	window.	
	

	 Page	3	

Sample	usage:	
	
> python3 –i data_display.py
>>> matrix = [[0,2,1,4], [4,5,3,8], [9,4,7,1], [5,1,7,0]]
>>> data_display(matrix)
	

	
	
	

3. Fractals!	
	
The	image	on	the	next	page	is	a	Sierpinski's	Triangle	(albeit,	rotated	and	with	a	different	
angle	than	the	canonical	form).	It	is	a	fractal;	that	is,	it	is	"a	rough	or	fragmented	geometric	
shape	that	can	be	split	into	parts,	each	of	which	is	(at	least	approximately)	a	reduced-size	
copy	of	the	whole."	In	this	case,	you	will	notice	that,	if	you	look	at	the	lower-right	corner,	it	
looks	the	same	(down	to	the	level	of	one	pixel)	at	different	levels	of	magnification.	
	
Starting	with	a	completely	filled-in	square,	this	Sierpinski's	Triangle	can	be	produced	with	
the	following	procedure:	
	
I. Return	None	if	the	image	is	too	small	to	be	visibly	subdivided.	
II. Otherwise,	consider	the	square	being	divided	up	into	four	quadrants	(squares).	
III. Draw	a	square	(rectangle	with	equal	sides)	in	the	upper-left	quadrant.	
IV. Recursively	draw	a	Sierpinski	triangle	in	each	of	the	other	three	quadrants.	

	
Finish	the	following	incomplete	Python	implementation	of	this	algorithm	and	save	it	
as	triangle.py.	(Cut	and	paste	the	code	into	this	file.)	You	only	need	to	supply	the	
parameters	to	the	recursive	procedure	calls.	You	should	not	add	any	other	additional	
code.	If	you	do	this	correctly,	you	will	be	able	to	reproduce	the	image	shown	above,	by	
calling	start_triangle(256,	"blue")	after	loading	your	source	file.	You	should	note	that	when	
you	specify	drawing	coordinates	for	the	canvas,	the	top	left	corner	is	the	origin	(0,0),	x	
increases	as	you	go	from	left	to	right,	but	y	increases	as	you	go	from	top	to	bottom.	
	
HINT:	You	need	to	figure	out	the	top-left	corner	and	size	for	each	of	the	other	three	
quadrants	and	fill	them	in	for	the	parameters	for	the	three	recursive	calls.	

	

	 Page	4	

from tkinter import *

def triangle(c, x, y, size):
 # create a triangle at top left (x,y) of given size on canvas c
 # by creating 3 subtriangles recursively
 if size < 2: # size = 1 means 1 pixel width, stop there
 return None
 half = size // 2
 # draw white square starting at top left (x,y) of half size on canvas c
 c.create_rectangle(x, y, x+half, y+half, width=0, fill="white")
 # recursively repeat the triangle
 # for each of the other three quadrants on canvas c
 triangle(c, , ,) # Fill in the missing parameters
 triangle(c, , ,) # Fill in the missing parameters
 triangle(c, , ,) # Fill in the missing parameters

This function initializes a drawing canvas,
then calls the recursive function triangle to do all the work
def start_triangle(size, color):
 window = Tk()
 c = Canvas(window, width=size, height=size)
 c.pack()
 c.create_rectangle(0, 0, size, size, fill=color)
 triangle(c, 0, 0, size) # draw a Sierpinski triangle top left at (x,y)
 # and with height and width of size on canvas c

Usage:	
	

> python3 –i triangle.py
>>> start_triangle(256, "blue")

	

	
	
	

Submission		
	
When	you	finish	the	lab,	you	should	be	inside	the	lab9	folder,	which	is	inside	the	
private/15110	directory.	When	you	type	ls	and	press	the	Enter	key,	you	should	see	the	
following	files:	random_boxes.py,	data_display.py,	and	triangle.py.	Once	you	see	
all	files,	please	type	cd .. 	to	move	up	one	folder	and	press	the	Enter	key.	Then,	zip	your	lab9	
folder	by	typing	zip –r lab9.zip lab9	and	you	should	see	a	lab9.zip	file	in	the	current	
folder	if	you	type	ls.	Please	submit	the	zipped	file	lab9.zip	on	Autolab	under	'lab	9'.	

