
	 Page	1	

15-110:	Principles	of	Computing,	Spring	2018	
	

Lab	8	–	Thursday,	March	22	
	
	

Goals	
	
This	lab	is	aimed	at	helping	you	understand	the	use	of	random	numbers	in	Python.	When	you	are	
done,	you	should	be	able	to:	

1. Use	randrange()	to	randomly	generate	integers	in	a	given	range.	
2. Write	functions	that	simulate	a	large	number	of	trials	of	a	random	process.	

	

Part	1:	TA	Demonstrations	(Random	Numbers	in	Python)	
	
In	class,	you	learned	how	to	generate	random	numbers	in	Python.	
	
import random
random.randrange(15,110) # returns random integer 15 <= x < 110
random.random() # returns random float 0.0 <= x < 1.0
random.uniform(1,10) # returns random float 1.0 <= x < 10.0
random.randint(1,10) # returns random integer 1 <= x <= 10
	
Class	discussion:	
	
1.	How	would	you	generate	the	roll	of	one	die?	
	
2.	To	generate	a	random	floating	point	value	between	-1.0	and	1.0	inclusive,	you	could	use	
random.uniform,	but	this	does	not	include	the	upper	bound.	If	you	want	to	include	the	upper	
bound,	you	can	do	the	following	instead:	
	

• Generate	a	random	integer	between	0	and	2000000000	(2	billion)	inclusive.	
• Subtract	1000000000	(1	billion)	from	the	random	integer.	

(Now	the	integer	is	between	-1000000000	and	1000000000	inclusive.)	
• Divide	this	result	by	1000000000.0	to	get	your	random	floating	point	value	

between	-1.0	and	1.0	inclusive.

(randint(0, 2000000000) - 1000000000) / 1000000000.0

(randrange(0, 2000000001) - 1000000000) / 1000000000.0

	

	 Page	2	

Self-Directed	Activities	
	

1. The	Monte	Carlo	method	is	a	computational	technique	that	works	by	calculating	a	statistical	
summary	of	a	large	number	of	random	operations.	One	simple	use	of	the	Monte	Carlo	
Method	is	to	approximate	the	value	of	pi.	
	

	
	
Consider	a	unit	circle	(a	circle	of	radius	1	whose	center	is	at	(0,0))	on	a	Cartesian	plane,	and	
a	square	whose	corners	are	at	(-1,1),	(1,1),	(1,-1),	and	(-1,-1).	(Shown	above.).	If	a	point	is	
chosen	randomly	within	the	square,	the	probability	of	it	also	being	within	the	circle	is	
determined	by	the	ratio	of	the	area	of	the	circle	(pi)	to	the	area	of	the	square	(4).	
We	can	use	this	fact	to	build	a	procedure	to	estimate	the	value	of	pi:	
	

1. Let	n	be	the	number	of	points	to	be	randomly	generated.	
2. Set	a	counter	to	0.	
3. Repeat	the	following	n	times:	

a) Generate	a	random	point	in	the	square:	
Let	x	be	a	randomly	generated	value	between	-1.0	and	1.0	inclusive.	
Let	y	be	a	randomly	generated	value	between	-1.0	and	1.0	inclusive.	

b) Determine	whether	the	distance	of	this	point	from	the	origin	(i.e.	sqrt(x2+y2))	
is	less	than	or	equal	to	1.0.	If	so,	the	point	lies	"inside"	the	unit	circle	so	add	1	
to	the	counter.	

4. Compute	the	ratio	of	the	total	number	of	points	inside	the	unit	circle	to	the	total	
number	of	points	generated.	

5. Multiply	this	ratio	by	4	to	obtain	an	estimate	of	pi.	Return	this	final	value.	
	
Write	a	Python	function	estimate_pi(n)	in	the	file	estimate_pi.py	that	
implements	the	algorithm	above.	Once	you	have	it	implemented,	test	it	with	n	=	1000.	How	
many	digits	of	your	estimate	of	pi	are	accurate?	Repeat	the	experiment	with	n	=	10000,	
100000,	1000000.	Share	your	results	with	classmates	to	compare	your	answers.	
	
	

	 Page	3	

2. Suppose	you	want	to	make	a	batch	of	25	raisin	cookies.	How	many	raisins	should	you	use	to	
make	sure	nearly	every	cookie	has	at	least	1	raisin?	Assume	that	raisins	are	randomly	
distributed	in	the	batter,	so	each	raisin	is	equally	likely	to	go	into	each	cookie.	
	
First,	write	a	Python	function	make_batch(c, r)	in	the	file	raisin_cookies.py	
where	c	represents	the	number	of	cookies	to	be	made	and	r	represents	the	number	of	
raisins	to	mix	into	the	batter.	This	function	returns	True	if	and	only	if	every	one	of	cookies	
has	at	least	1	raisin.	Implement	the	function	as	follows:	
	

1. Create	a	list	of	c	zeros	called	cookie.	This	list	represents	a	set	of	counters	that	keep	
track	of	the	number	of	raisins	in	each	cookie.	
	

2. Distribute	the	raisins	randomly	(i.e.	do	this	r	times):	
o Compute	a	random	cookie	index.		

(Think:	Generate	a	random	integer	between	what	two	values?)	
o Increment	cookies[index]	by	1.	

	
3. For	debugging	purposes,	print	out	this	list.	

	
4. See	if	every	cookie	has	at	least	one	raisin:	

o Use	a	linear	search	on	the	cookie	list	to	see	if	any	counter	is	zero;	if	any	
counter	is	zero,	immediately	return	False.	

o If	the	search	completes	without	finding	a	zero,	return	True.	
	

Test	your	function	with	the	following	function	calls	in	the	Python3	interpreter:	
make_batch(10, 10)
make_batch(10, 20)
make_batch(10, 50)
See	that	you	get	the	correct	answers.	You	may	need	to	run	each	several	times	since	you're	

	 using	random	numbers	here.	Once	you	are	sure	it	works,	comment	out	step	3	above.	
	
Next,	write	a	function	probability(c, r)	in	the	same	file	to	estimate	the	probability	
that	for	c	cookies	and	r	raisins,	every	cookie	will	have	at	least	one	raisin:	
	

1. Set	count	=	0	
2. Do	this	1000	times:	

o Call	make_batch(c,	r)	and	if	the	returned	result	is	True,	increment	count	by	1.		
3. After	the	loop,	return	count	/	1000,	the	fraction	of	times	every	cookie	has	at	least	

one	raisin.	
	

Call	probability(25, 100)	to	estimate	the	probability	that	every	cookie	in	a	batch	of	
25	cookies	will	have	at	least	1	raisin	if	there	are	100	raisins	in	all.		
Call	probability(25, 100)	again.	Make	sure	you	understand	why	you	do	not	get	the	
same	answer.	Discuss	briefly	with	another	student	in	lab.	

	 Page	4	

	
FURTHER	WORK	[OPTIONAL]:		
	
Now	we	want	to	answer	a	different	question:	how	many	raisins	do	we	have	to	use	to	get	a	
good	probability	that	every	cookie	has	a	raisin?	Write	a	Python	function	
raisins_needed(num_cookies, error)	in	the	file	raisin_cookies.py.	The	
idea	is	to	start	with	the	same	number	of	raisins	as	cookies	(we	need	at	least	that	many),	and	
call	your	probability	function	to	get	the	probability	that	every	cookie	has	a	raisin.	Keep	
increasing	the	number	of	raisins	until	the	answer	from	your	probability	function	is	
close	enough	to	1	(certainty).	The	uncertainty	to	allow	is	given	by	error.	For	example,	
an	error	of	0.1	means	that	we	want	an	answer	with	certainty	of	99%	(i.e.	a	probability	of	
0.99).	
	
The	algorithm:	
	

1. Set	num_raisins	=	num_cookies.	
2. Set	diff	to	1.0	-	probability(num_cookies,	num_raisins)	
3. While	diff	is	greater	than	error,	increase	num_raisins	by	one	and	recalculate	diff	as	

above.	
4. Once	diff	is	less	than	or	equal	to	error,	return	num_raisins.	

	
Example	usage	(note	that	for	large	numbers	of	cookies	and/or	small	error	values	this	will	
take	a	while	to	run):	
	
>>> raisins_needed(1, .1)
1
>>> raisins_needed(2, .1)
5
>>> raisins_needed(10, .1)
45

	
	 Experiment	with	other	error	values	and	cookie	amounts.	
	
	

Submission		
	
When	you	finish	the	lab,	you	should	be	inside	the	lab8	folder,	which	is	inside	the	
private/15110	directory.	When	you	type	ls	and	press	the	Enter	key,	you	should	see	the	
following	files:	estimate_pi.py,	raisin_cookies.py.	Once	you	see	all	files,	please	type		
cd .. 	to	move	up	one	folder	and	press	the	Enter	key.	Then,	zip	your	lab8	folder	by	typing		
zip –r lab8.zip lab8	and	you	should	see	a	lab8.zip	file	in	the	current	folder	if	you	
type	ls.	Please	submit	the	zipped	file	lab8.zip	on	Autolab	under	'lab	8'.	

