
	 Page	1	

15-110:	Principles	of	Computing,	Spring	2018	
	

Lab	7	–	Thursday,	March	1	
	
	

Goals	
	
This	lab	is	aimed	at	developing	your	understanding	of	the	importance	of	hash	function	design	for	
the	efficiency	of	search	using	a	hash	table.	When	you	are	done,	you	should	be	able	to:	

1. State	the	worst-case	performance	of	search	in	a	hash	table	(with	an	arbitrary	hash	
function).	

2. Explain	what	features	of	a	hash	function	affect	the	performance	of	search	in	a	hash	table	
and	why.	

3. Explain	why	search	in	a	hash	table	can	be	expected	to	take	constant	time,	given	a	good	
enough	hash	function	and	a	large	enough	table.	

	

Part	1:	TA	Demonstrations	(Hash	Functions)	
	
The	correct	operation	of	a	hash	table	relies	on	a	hash	function	that	maps	keys	(in	our	case,	these	
are	strings)	to	non-negative	integers	that	indicate	which	bucket	the	key	belongs	to.	The	hash	
table	will	work	as	long	as	the	hash	function	maps	each	key	to	a	non-negative	integer	less	than	
the	size	of	the	hash	table	(ht_size),	but	it	will	only	perform	well	if	it	distributes	keys	relatively	
uniformly	across	buckets.	
	
Consider	the	following	hash	functions:	
	

1. Perhaps	the	simplest	possible	hash	function	is	one	that	just	ignores	the	key	and	always	
returns	0:	
	
def h0(key,ht_size):
 return 0

2. Another	hash	function	obtains	the	ASCII	code	of	the	first	character	in	the	key,	divides	that	

code	by	the	size	of	the	hash	table,	and	returns	the	remainder	of	that	division.	This	can	be	
coded	in	Python	as:	
	
def h1(key,ht_size):
 return ord(key[0]) % ht_size

	
3. Another	hash	function	totals	up	the	ASCII	codes	of	all	of	the	characters	in	the	key,	divides	

that	total	by	the	size	of	the	hash	table,	and	returns	the	remainder	of	that	division:	

	 Page	2	

def h2(key, ht_size):
 x = 0
 for i in range(len(key)):
 ascii_code = ord(key[i])
 x = x + ascii_code
 return x % ht_size
	
This	scheme	examines	all	the	letters	in	the	string,	but	is	not	sensitive	to	order.	So	the	
strings	"act",	"cat",	and	"tac"	will	all	hash	to	the	same	value.	
	

4. It	is	also	possible	to	build	a	hash	function	that	is	position	sensitive,	in	that	each	position	is	
scaled	by	a	power	of	some	constant,	like	128.	So	"ab"	would	be	treated	differently	than	
"ba".	In	the	first	case,	the	numerical	code	for	"a"	would	be	multiplied	by	128	and	then	the	
numerical	code	for	"b"	would	be	added,	whereas	in	the	second	case,	the	numerical	code	
for	"b"	would	be	multiplied	by	128	and	then	the	numerical	code	for	"a"	would	be	added.	
To	make	this	into	a	Python	hash	function,	one	need	only	convert	the	string	into	a	Python	
integer	and	then	take	the	remainder	modulo	the	size	of	the	hash	table:	
	
def h3(key,ht_size):
 x = 0
 for i in range(len(key)):
 ascii_code = ord(key[i])
 x = 128 * x + ascii_code
 return x % ht_size

	

Self-Directed	Activities	
	

1. Hash	Functions:	For	each	of	the	hash	functions,	h0,	h1,	h2,	and	h3,	find	the	result	of	
hashing	the	following	strings	for	a	table	of	size	100,000.		
	

i. "Hash table"
ii. "Table hash"
iii. "Towers of Hanoi"

	

You	can	do	this	easily	by	downloading	the	file	hash_table.py	from	Autolab	into	your	
lab7	directory.	Then	you	can	start	python3	and	load	the	hash	functions	and	run	them:	
	
> python3 –i hash_functions.py
>>> h0("Hash table", 100000)
0
>>> etc.
	
For	each	of	these	hash	functions,	would	you	get	any	collisions	(i.e.,	more	than	one	key	
hashing	to	the	same	bucket)	if	you	were	to	insert	these	keys	into	a	hash	table?	
Record	the	results	in	a	text	file	experiments.txt .	

	 Page	3	

	
2. Hash	Table	Statistics:	Our	hash	tables	are	implemented	as	Python	lists	where	each	

element	is	a	bucket.	That	bucket	is	a	list	that	holds	the	entries	that	hashed	to	that	
bucket's	index.	In	order	to	evaluate	the	effectiveness	of	different	hash	functions	it	is	
useful	to	be	able	to	gather	some	statistics	about	the	hash	table	after	we've	inserted	some	
entries.	
	

i. Define	a	Python	function	largest_bucket(ht)	in	largest_bucket.py		
In	your	lab7	folder	that	returns	the	maximum	number	of	entries	contained	
within	any	single	bucket	of	the	hash	table	ht.	Remember	that	the	hash	table	is	
implemented	as	a	list	of	lists.	Each	interior	list	is	a	"bucket".	You	can	follow	this	
algorithm:	
	

1. Set	max_so_far	to	0.	
2. For	each	element	bucket	in	the	hash	table,	do	the	following:	

a.	If	the	length	of	bucket	is	greater	than	max_so_far,	then:	
set	max_so_far	to	the	length	of	bucket	

3. Return	max_so_far.	
	

Example:	
	

>>> largest_bucket([["a","b"],[],["w","x","y","z"],["c"]])
4

ii. Define	a	Python	function	mean_bucket(ht)	in	mean_bucket.py	in	your	

lab7	folder	that	returns	the	arithmetic	mean	of	the	number	of	entries	in	non-
empty	buckets	of	the	hash	table	ht.	You	can	follow	this	algorithm:	
	

1. Set	nonempty_buckets	to	0.	
2. Set	entries	to	0.	
3. For	each	element,	bucket,	in	the	hash	table,	do	the	following:	

a. If	the	length	of	bucket	is	greater	than	0.	
i.	Add	one	to	nonempty_buckets.	
ii.	Add	the	length	of	bucket	to	entries.	

4. Return	entries/nonempty_buckets	
	

Example:	
>>> mean_bucket([["a","b"],[],["w","x","y","z"],["c"]])
2.33333333333333

		

iii. What	is	the	point	of	gathering	these	statistics?	Ideally,	would	we	want	the	
maximum	bucket	size	and	the	mean	bucket	size	to	be	small	or	large?	Write	a	brief	
explanation	in	experiments.txt .	

	

	 Page	4	

	
3. Hash	Table	Experiments:	Download	and	save	the	code	in	hash_table.py	from	

Autolab	into	your	lab7	folder.	Look	at	the	code.	This	code	implements	hash	table	
creation	(new_hash_table),	insertion	(ht_insert),	search	(ht_search),	and	
imports	the	four	hash	functions	(h0,	h1,	h2,	h3)	and	your	work	from	problem	2.	There	is	
a	"main"	function	called	run(hash_fun)	that	sets	up	a	hash	table,	inserts	a	large	
number	of	words,	and	then	does	some	searches.	It	measures	the	elapsed	time	for	these	
operations,	and	reports	some	statistics	about	the	buckets	(using	your	
functions	largest_bucket	and	mean_bucket	you	wrote	for	problem	2).	
	
Load	hash_table.py by	typing		
	
python3 -i hash_table.py
	
into	the	terminal,	and	execute	run("h0"),	run("h1"),	run("h2"),	
and	run("h3"),	which	will	perform	the	timing	and	statistical	measurements	for	hash	
tables	with	the	respective	hash	function.	In	interpreting	the	results,	take	note	of	the	fact	
that	run()	inserts	100,000	words	but	only	searches	1000	times.	
	
Record	the	output	of	these	runs	in	experiments.txt	.	How	well	do	the	different	hash	
functions	perform	for	the	insertion	and	search	operations?	What	correlation	do	you	see	
between	how	evenly	the	hash	function	distributes	keys	across	buckets	and	the	search	
performance	of	the	hash	functions?	
	

	

Submission		
	
When	you	finish	the	lab,	you	should	be	inside	the	lab7	folder,	which	is	inside	the	
private/15110	directory.	When	you	type	ls	and	press	the	Enter	key,	you	should	see	the	
following	files:	experiments.txt,	hash_functions.py,	largest_bucket.py,	
mean_bucket.py,	and	hash_table.py.	Once	you	see	all	files,	please	type	cd ..	to	move	
up	one	folder	and	press	the	Enter	key.	Then,	zip	your	lab7	folder	by	typing	zip –r
lab7.zip lab7	and	you	should	get	a	lab7.zip	file	in	the	current	folder.	Please	submit	the	
zipped	file	lab7.zip	on	Autolab	under	'lab	7'.	

