
	 Page	1	of	3	

15-110:	Principles	of	Computing,	Spring	2018	
	

Lab	6	–	Thursday,	February	22	
	

	
Goals	
	

• Identify	the	base	case	and	recursive	case	of	a	given	recursive	function	
• Implement	simple	recursive	functions	over	integers,	one-dimensional	lists,	and	nested	

lists	
	
	
Part	1	:	TA	Demonstrations	
	

1.1	Recursive	Function	
	

Remember	that	a	recursive	function	has	a	base	case	followed	by	one	or	more	recursive	cases.	
Example:	
	
 def fib(n):
 if n == 0 or n == 1:
 return n
 else:
 return fib(n-1) + fib(n-2)
	
1.2	List	
	

• How	do	you	create	a	list	with	all	but	the	first	element	of	a	given	list?	
	

• Let	x = [1, [4, 5, [6, 7, 8], 10], 12, [14], 15]	
	
Why	is	len(x)	equal	to	5?	What	is	len(x[1])		?	
What	is	x[1:]			?			
	
How	can	we	access	the	element	7?		
	
How	can	we	test	if	an	element	of	x	is	an	integer	or	a	list	itself?	
>>> isinstance(x, list)
True
>>> isinstance(x[0], int)
True

	 	

	 Page	2	of	3	

Part	2	:	Student	Activities	
	

1.	Create	a	file	multiply.py	using	gedit.	In	multiply.py,	define	a	RECURSIVE	Python	
function	multiply(a, b)	that	computes	the	value	of	a * b	based	on	the	following	
RECURSIVE	formula.	Assume	that	the	function	is	always	called	with	a	non-negative	integer	for	b.	
	

𝑎×𝑏 =
𝑎

𝑎 + 𝑎×(𝑏 − 1)
if 𝑏 = 1
if 𝑏 > 1	

	
NOTE:	Do	not	use	the	multiplication	operation	(*)	in	your	solution.	Instead,	think	recursively:		
	
def multiply(a, b):
 if __________________: # base case
 return __________
 else
 return a + multiply(_________________)
	
(The	last	blank	should	be	a	recursive	call	to	the	multiply	function.)
	
Example	Usage:	

	

-bash-4.2$ python3 –i multiply.py
>>> multiply(5, 1)
5
>>> multiply(5, 10)
50
	
2.	Create	a	file	stars.py	using	gedit.	In	stars.py,	define	a	function	print_stars(n)	
that	prints	n	stars	(asterisks)	in	a	row	recursively,	assuming	n	is	a	positive	integer	(n	≥	1).	What	
is	the	base	case?	In	the	recursive	case,	print	one	star	(without	moving	to	the	next	line)	and	then	
use	the	function	recursively	to	print	the	rest.	
	
After	you	do	this,	then	write	a	function num_to_bar(numlist)	that	prints	a	bar	graph	of	
the	numbers	given	in	numlist	using	stars.	Your	solution	must	use	the	print_stars	
function	you	wrote	above.	You	can	assume	that	numlist	contains	positive	numbers	only.	
	

Example	Usage:	
	

-bash-4.2$ python3 –i stars.py
>>> num_to_bar([5, 2, 6, 4])

**

>>> num_to_bar([5, 7, 1])

*

	 Page	3	of	3	

3.	Recursion	is	especially	useful	when	searching	nested	lists	(lists	of	lists).	Create	a	file	
sumlist.py	using	gedit.	In	sumlist.py,	define	a	RECURSIVE	Python	function	
sumlist(datalist)	that	has	a	parameter	representing	a	list	containing	integers	and	
returns	the	sum	of	all	of	the	data	in	the	list.	The	twist	here	is	that	the	data	list	can	have	nested	
lists	inside.	
	
Here	is	the	overview	of	the	algorithm	to	use:	
	

1.	If	the	list	is	empty,	return	0	as	its	sum.	
2.	If	the	first	element	of	the	list	is	an	integer,	then	return	that	value	plus	(recursively)	
the	sum	of	the	rest	of	the	list.	
3.	If	the	first	element	of	the	list	is	a	list,	then	return	(recursively)	the	sum	of	that	list	plus	
(recursively)	the	sum	of	the	rest	of	the	list.	

Example	Usage:	

	

-bash-4.2$ python3 –i sumlist.py
>>> sumlist([2, [4, [6, 7, 8], 10]])
37
>>> sumlist([1, [4, 5, [6, 7, 8], 10], 12, [14], 15])
82
>>> sumlist([5])
5

	
	
Submission	
	

When	you	finish	the	lab,	you	should	be	inside	the	lab6	folder,	which	is	inside	the	
private/15110	directory.	When	you	type	‘ls’	and	press	the	Enter	key,	you	should	see	
the	following	files:	multiply.py,	stars.py,	and	sumlist.py.	Once	you	see	all	files,	
please	type	‘cd ..’	and	press	the	Enter	key.	Then,	zip	your	lab6	folder	by	typing		
‘zip –r lab6.zip lab6’.	Please	submit	the	zipped	file	lab6.zip	on	Autolab	under		
lab	6.

