
	 Page	1		

15-110:	Principles	of	Computing,	Spring	2018	
	

Lab	5	–	Thursday,	February	15	
	

	
Goals	
	

• Practice	debugging	code	
	
Even	though	it	may	seem	easy	to	come	up	with	an	algorithm	to	solve	a	problem,	you	may	end	
up	with	a	number	of	errors	when	you	translate	the	algorithm	to	a	program.	Learning	how	to	
debug	efficiently	(rather	than	randomly	hacking	at	your	code)	will	help	you	write	correct	
programs	more	quickly.	The	following	are	some	steps	to	remember	as	you	debug:	
	

1. Run	your	code	with	python	and	check	for	syntax	errors.	(Not	fulfilling	the	
requirements	for	the	language	format	will	result	in	syntax	errors	and	your	code	will	
immediately	fail	when	Python	loads.)	

2. Run	your	functions	on	specific	inputs	and	check	if	you	get	your	expected	output.	
3. Read	through	your	code	and	observe	what	the	function	is	doing	at	each	step.	See	if	this	

matches	your	expectation	of	what	it	should	do.	
4. Put	print	statements	at	logical	points	in	your	code	to	print	the	contents	of	a	specific	

variable	or	list.	Check	if	the	printed	outputs	are	what	you	expect	your	program	to	be	
doing.	Do	you	see	a	long	series	of	outputs	that	never	seems	to	end?	Maybe	you	have	an	
infinite	loop.	

	

When	Python	crashes	loading	your	file	or	running	your	function,	reading	the	printed	error	
message	is	helpful.	The	message	indicates	the	line	number	at	which	the	error	is	happening	as	
well.	
	
	
	 	

	 Page	2		

Part	1	:	Reading	the	Error	Message	[TA	Demonstrations]		
	

1.1	Syntax	Error	and	Logical	Error	
	

The	following	table	describes	two	different	types	of	errors	that	you	may	encounter	when	
writing	code:	
	

Syntax	Error	 Logical	Error	
• Fails	immediately	when	Python	loads	
• Occurs	when	not	satisfying	the	

requirements	for	the	language	
format	

• Code	compiles,	but…	
• Python	gives	the	wrong	answer	
• Does	not	behave	the	way	it	is	

intended	to	

def add_elements(numlist):
 result = 0
 for i in range(len(numlist))
 # missing a colon!
 result = result + numlist[i]
 return result

def add_elements(numlist):
 result = 0
 for i in range(len(numlist)):
 result = result + i
 # adding index, not element
 return result

-bash-4.2$ python3 –i
add_elements.py
File “add_elements.py”, line 3
 for i in range(len(numlist))
 ^
SyntaxError: invalid syntax

-bash-4.2$ python3 –i add_elements.py
>>> add_elements([10, 20, 30, 40])
6
>>> # what did we expect?

	
You	should	generate	information	or	clues	about	the	behavior	of	your	program	before	asking	
for	help.	Looking	at	the	clues,	programmers	can	often	figure	out	what	is	wrong	on	their	own.	
When	you	write	code	and	errors	happen,	put	on	your	detective	cap	and	start	to	look	for	clues!	
The	more	you	do	this,	the	better	you	will	be	at	writing	programs!	
	
	
	
Part	2	:	Student	Activities	
	

Create	a	file	answers.txt	using	gedit.	For	each	of	the	programs	below,	find	the	bug(s)	and	
place	your	answers	to	the	following	questions	for	each	program	in	answers.txt.	
	

a. If	you	got	a	syntax	error,	how	did	you	figure	out	what	was	wrong?	
b. What	arguments	did	you	use	to	demonstrate	any	logical	error?	
c. What	output(s)	did	you	expect	with	the	argument(s)	used	above	and	what	did	you	get	

instead?	
d. How	did	the	steps	above	help	you	find	the	logical	error?	

	

You	may	put	N/A	as	your	answer	if	the	question	does	not	apply.	Also,	you	should	correct	the	
code	after	running	your	debugging	test(s)	and	save	the	file	as	the	specified	name.	To	save	time,	
copy	and	paste	the	original	code	into	your	editor	before	modifying	it.	
	
	

	 Page	3		

1. The	function	contains(element_list, key)	should	return	True	if	
element_list	contains	key	and	False	otherwise.	
	

def contains(element_list, key):
 for item in element_list:
 if item == key:
 print(True)
 print(False)

	
Create	a	file	contains.py	and	copy	and	paste	the	code	above.	Determine	the	bug(s),	
write	the	answers	to	the	questions	above	in	answers.txt,	and	save	the	file	after	
correcting	the	code.	
	
	

	
2. The	function	get_index(element_list, key)	should	return	the	first	index	of	

key	in	element_list.	It	should	return	-1	if	key	is	not	in	element_list.	
	

def get_index(element_list, key):
 for i in range(0, len(element_list)):
 if element_list(i) == key:
 return i
 else:
 return -1

	
Create	a	file	get_index.py	and	copy	and	paste	the	code	above.	Determine	the	
bug(s),	write	the	answers	to	the	questions	above	in	answers.txt,	and	save	the	file	
after	correcting	the	code.	

	
	

3. pow(base, exp)	is	the	power	(exponentiation)	function	which	is	defined	recursively.	
It	should	raise	base	to	exp.	In	other	words,	it	is	equivalent	to	base ** exp.	
However,	the	function	must	work	recursively;	you	cannot	just	correct	it	by	returning	
base ** exp	to	solve	this	problem.		
	
To	compute	𝑏𝑎𝑠𝑒!"#	recursively,	we	note	that	𝑏𝑎𝑠𝑒!"# = 𝑏𝑎𝑠𝑒×𝑏𝑎𝑠𝑒!"#!!	with	the	
special	case	that	𝑏𝑎𝑠𝑒!"# = 𝑏𝑎𝑠𝑒	if	𝑒𝑥𝑝 = 1.	
	

def pow(base, exp):
 return base * pow(base, exp - 1)
 if exp == 1:
 return base

	
Create	a	file	pow.py	and	copy	and	paste	the	code	above.	Determine	the	bug(s),	write	
the	answers	to	the	questions	above	in	answers.txt,	and	save	the	file	after	correcting	
the	code.	
	

	 Page	4		

4. The	function	square_evens(numlist)	square	all	even	numbers	in	numlist	and	
print	the	resulting	list.		
	

def square_evens(numlist):
 for num in numlist:
 if num % 2 == 0:
 num = num ** 2
 print(numlist)

	
Create	a	file	square_evens.py	and	copy	and	paste	the	code	above.	Determine	the	
bug(s),	write	the	answers	to	the	questions	above	in	answers.txt,	and	save	the	file	
after	correcting	the	code.	
	

	
5. The	function	list_mult(numlist, multiplier)	should	multiply	each	of	the	

numbers	in	numlist	by	multiplier.	The	function	test_mult(numlist)	
should	use	list_mult	to	create	and	print	two	different	modifications	of	the	given	list:	
two_mult	should	be	a	list	made	up	of	all	of	the	original	list	elements	multiplied	by	2	
and	five_mult	should	be	a	list	made	up	of	all	of	the	original	list	elements	multiplied	
by	5.	
	

def list_mult(numlist, multiplier):
 for i in range(0, len(numlist)):
 numlist[i] = numlist[i] * multiplier
 return numlist

def test_mult(numlist):
 two_mult = list_mult(numlist, 2)
 five_mult = list_mult(numlist, 5)
 print(two_mult)
 print(five_mult)

	
Create	a	file	list_mult.py	and	copy	and	paste	the	code	above.	Determine	the	
bug(s),	write	the	answers	to	the	questions	above	in	answers.txt,	and	save	the	file	
after	correcting	the	code.	
	

Submission	
	

When	you	finish	the	lab,	you	should	be	inside	the	lab5	folder,	which	is	inside	the	
private/15110	directory.	When	you	type	‘ls’	and	press	the	Enter	key,	you	should	see	
the	following	files:	answers.txt,	contains.py,	get_index.py,	pow.py,	
square_evens.py,	and	list_mult.py.	Once	you	see	all	files,	please	type	‘cd ..’	and	
press	the	Enter	key.	Then,	zip	your	lab4	folder	by	typing	‘zip –r lab5.zip lab5’.	
Please	submit	the	zipped	file	lab5.zip	on	Autolab	under	lab	5.	

