
	 Page	1		

15-110:	Principles	of	Computing,	Spring	2018	
	

Lab	4	–	Thursday,	February	8	
	

	
Goals	
	

• Review	how	to	perform	a	simple	linear	search	and	how	to	time	a	function.		
• Analyze	linear	search	by	timing	it	for	various	searches	to	find	patterns.	
• Modify	linear	search	so	it	can	solve	a	related	problem.		
• Use	a	while	loop	to	search	a	“gapped”	list	–	that	is,	every	nth	element	of	a	list.		

	
Part	1	:	Linear	Search	and	Timing	Code	[TA	Demonstration]	
	

1.1	Creating	a	List	Containing	a	Range	of	Elements	
	
	

>>> list(range(0,10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
	

	
1.2	Linear	Search	and	a	Timing	function	
	

Create	a	lab4	directory.	In	this	directory,	store	the	file	timer.py	from	Autolab.	In	
timer.py,	the	following	function	finds	the	index	of	the	first	occurrence	of	the	key	in	
datalist:	

�def search(datalist, key):
 for i in range(0, len(datalist)):
 �if datalist[i] == key:
 return i
 return None

In	the	same	file	timer.py,	the	following	function	measures	the	time	it	takes	to	run	this	
search	for	a	list	of	integers	from	100,000	through	300,000,	inclusive.		

import time
def timer(key):  
 biglist = list(range(100000, 300001))  
 start = time.time()
 search(biglist, key)
 stop = time.time()  
 return stop - start

	 	

	 Page	2		

Part	2:	Student	Activities	
	

2.1	Timing	
	

Create	a	file	timing.txt	using	gedit.	In	timing.txt,	write	your	answers	to	the	following	
problems.	
	

a. Time	how	long	the	search	function	above	takes	to	find	each	of	the	following	in	
biglist:	
	
i. 100,000	(element	at	the	front	of	biglist)		
ii. 200,000	(element	at	the	center	of	biglist)		
iii. 300,000(element	at	the	end	of	biglist)		
iv. 3	(element	not	in	biglist)	

	
b. If	you	repeat	the	same	searches,	does	it	take	the	same	amount	of	time?	Why?	

	
c. Which	searches	depend	on	the	length	of	the	list?	Which	do	not?		

	
2.2	Are	they	all	odd?	
	

Recall	we	can	use	modulo	to	determine	if	an	integer	is	odd	or	even:	
	
	

>>> 4 % 2 # 4 is even
0
>>> 5 % 2 # 5 is odd
1
	

	
In	your	lab4	directory,	create	a	file	is_all_odd.py	using	gedit.	In	is_all_odd.py,	
define	a	Python	function	is_all_odd(numlist)	that	takes	an	integer	list	as	an	argument	
and	returns	True	if	all	elements	in	numlist	are	odd	numbers	and	False	otherwise.	
	
Algorithm:	Modify	the	linear	search	algorithm	(1.2).	For	each	index	i,	if	datalist[i]	is	even,	
then	the	list	can't	be	all	odd	so	return	False.	If	you	searched	through	the	whole	list	(i.e.	tried	
every	index	i)	and	never	saw	an	even	element,	then	return	True	at	the	end	of	the	function.	

	
Example	Usage:	
-bash-4.2$ python3 –i is_all_odd.py
>>> is_all_odd([1, 2, 8, 12, 99])
False
 >>> is_all_odd([1, 3, 5, 7])
True  
>>> is_all_odd([11])
True
>>> is_all_odd([])
True

	

	 Page	3		

2.3	Gapped	List	
	

In	this	exercise,	you	will	iterate	over	a	“gapped”	list	(i.e.,	by	examining	every	nth	element).	In	
your	lab4	directory,	create	a	file	gap_search.py	using	gedit.	In	gap_search.py,	write	a	
Python	function	gap_search(datalist, key, gap).	This	function	works	like	the	
search(datalist, key)	from	1.2	above,	but	with	these	important	differences:	
	
a. You	will	use	a	while	loop	instead	of	a	for	loop;	and		
b. The	search	must	start	with	the	first	element,	then	skip	over	the	number	of		elements	given	

by	gap,	and	so	on.	You	may	assume	gap	is	greater	than	or	equal	to	1.	For	example,	if	we	
have	a	gap	of	2	and	the	following	datalist:	[‘t’,‘u’,‘v’,‘w’,‘x’,‘y’,‘z’],then	
the	search	must	examine	‘t’,	‘v’,	‘x’,	and	‘z’.	However,	if	the	gap	is	3,	then	the	
search	must	examine	‘t’,	‘w’,	and	‘z’;	if	the	gap	is	4,	it	must	examine	‘t’	and	‘x’;	
and	if	the	gap	is	greater	than	6,	only	‘t’	must	be	examined.		

	
Use	the	following	algorithm:	

1. Set	i	equal	to	0.		
2. While	i	is	less	than	the	length	of	datalist,	do	the	following:	

a. If	the	element	at	index	i	in	datalist	is	equal	to	key,	then	return	i.		
b. Otherwise,	add	gap	to	i.		

3. If	you	get	here,	the	key	is	not	found,	so	return	None.		

Example	usage:	
-bash-4.2$ python3 –i gap_search.py
>>> gap_search([‘t’, ‘u’, ‘v’, ‘w’, ‘x’, ‘y’, ‘z’], ‘x’, 1)
4  
>>> gap_search([‘t’, ‘u’, ‘v’, ‘w’, ‘x’, ‘y’, ‘z’], ‘x’, 2)
4
>>> gap_search([‘t’, ‘u’, ‘v’, ‘w’, ‘x’, ‘y’, ‘z’], ‘x’, 3)
>>> gap_search([‘t’, ‘u’, ‘v’, ‘w’, ‘x’, ‘y’, ‘z’], ‘x’, 4)
4  
>>> gap_search([‘t’, ‘u’, ‘v’, ‘w’, ‘x’, ‘y’, ‘z’], ‘x’, 5)
>>> gap_search([‘t’, ‘u’, ‘v’, ‘w’, ‘x’, ‘y’, ‘z’], ‘x’, 6)
>>> gap_search([‘t’, ‘u’, ‘v’, ‘w’, ‘x’, ‘y’, ‘z’], ‘x’, 7)
>>> gap_search([‘t’, ‘u’, ‘v’, ‘w’, ‘x’, ‘y’, ‘z’], ‘a’, 1)
>>> gap_search([‘t’, ‘u’, ‘v’, ‘w’, ‘x’, ‘y’, ‘z’], ‘z’, 1)
6
>>> gap_search([‘t’, ‘u’, ‘v’, ‘w’, ‘x’, ‘y’, ‘z’], ‘z’, 3)
6
	

Submission	
	

When	you	finish	the	lab,	you	should	be	inside	the	lab4	folder,	which	is	inside	the	directory	
private/15110.	When	you	type	‘ls’	and	press	the	Enter	key,	you	should	see	the	following	
files:	timer.py, timing.txt, is_all_odd.py,	and gap_search.py.	Once	you	
see	all	files,	please	type	‘cd ..’	and	press	the	Enter	key.	Then,	zip	your	lab4	folder	by	typing:	
zip –r lab4.zip lab4	
You	will	see	the	files	being	compressed.	Then	submit	the	zipped	file	lab4.zip	on	Autolab.

