
	 Page	1		

15-110:	Principles	of	Computing,	Spring	2018	
	

Lab	3	–	Thursday,	February	1	
	

	
Goals	
	

• Practice	creating	Python	functions,	experimenting	more	with	modulo	
• Experiment	with	multiple	uses	of	the	if	statement	
• Create	a	loop	to	display	a	pattern	of	numbers	

	
	
Part	1	:	Print	vs.	Return	[TA	Demonstration]	
	
def f1(x):
 return x*x

def f2(x):
 print(x*x)

def test():
 y = f1(15)
 print("y is: ", y)
 z = f2(110)
 print("z is: ", z)

python3 -i printing.py
>>> test()
y is: 225
12100
z is: None

	
	
	

Part	2:	If	and	While	Statements	[TA	Demonstrations]	
	

The	if	and	while	statements	depend	on	Boolean	conditions,	expressions	that	evaluate	to	
True	or	False.	
	

General	structure	of	the	if	statement:		
	
	

if condition:
 statement(s)
	

	
	

General	structure	of	the	while	statement:	
	
	

initialize_loop_variable
while condition:
 loop_body
 modify_loop_variable
	

	

	 Page	2		

Part	3:	Student	Activities	
	

3.1	Doomsday	Algorithm	
	

In	the	Gregorian	calendar	(the	one	that	we	use	today),	an	amazing	property	exists.	On	any	given	
year,	the	dates	April	4th	(4/4),	June	6th	(6/6),	August	8th	(8/8),	October	10th	(10/10),	and	
December	12th		(12/12)	all	occur	on	the	same	day	of	the	week.	Also,	so	do	May	9th	(5/9)	and	
September	5th	(9/5)	as	well	as	July	11th	(7/11)	and	November	7th	(11/7).	These	days	are	known	
as	“doomsdays”.	
	
To	compute	the	day	of	the	week	for	the	doomsdays	given	a	year,	follow	the	algorithm	below	
(good	for	the	years	2000	–	2099):	
	

i. Let	y	be	the	last	two	digits	of	the	year.	(How	do	you	compute	this	using	the	modulo	
operator?)	
	

ii. Let	a	be	the	integer	quotient	when	you	divide	y	by	12.	
	

iii. Let	b	be	the	integer	remainder	when	you	divide	y	by	12.	
	

iv. Take	the	integer	remainder	from	the	previous	step	and	divide	it	by	4,	keeping	just	
the	integer	quotient	as	c.	

	

v. Let	d	be	the	sum	of	a,	b,	and	c.	
	

vi. Let	e,	which	represents	the	day	of	the	week	for	the	doomsdays,	be	the	integer	
remainder	after	adding	2	to	d	and	dividing	the	result	by	7.	(Note	that	e	should	be	a	
value	between	0	and	6.	Why?)	

	

vii. Return	the	string	shown	below	given	the	final	value	of	e:	
	

e	 String	to	Return	
0	 “Sunday"	
1	 “Monday”	
2	 “Tuesday”	
3	 “Wednesday”	
4	 “Thursday”	
5	 “Friday”	
6	 “Saturday”	

	
a. Trace	the	algorithm	above	on	paper	for	2017.	What	day	do	you	get?	Check	a	calendar	

online	to	verify	that	you	got	the	correct	answer.	
	

b. Create	a	file	doomsday.py	using	gedit.	In	doomsday.py,	define	a	Python	function	
compute_day(year)	that	returns	the	day	of	the	week	for	the	doomsdays	given	the	
value	supplied	for	the	parameter	year	using	the	algorithm	above.	Using	Python3,	test	
your	function	with	at	least	5	different	years	to	see	if	it	is	working	as	you	intended.	(Is	
this	enough	testing	in	your	opinion?)	

	

	 Page	3		

3.2	Program	Logic	
	

Recall	that	a	variable	can	store	different	kinds	of	data.	A	variable	can	hold	a	Boolean	(logical)	
value	of	True	or	False.	
	
If	we	connect	two	relational	expressions	(that	evaluate	to	Boolean	values)	with	the	operator	
and,	the	result	is	True	if	both	relational	expressions	are	true.	Otherwise,	the	result	is	False.	
If	we	connect	two	relational	expressions	with	the	operator	or,	the	result	is	True	if	at	least	one	
of	the	relational	expressions	is	true.	Otherwise,	the	result	is	False.	
	

a. Create	a	file	legal.py	in	your	lab3	folder	and	cut	and	paste	the	code	below	from	
Autolab.	This	function	prints	out	what	is	legal	to	do	for	a	person	in	the	U.S.	given	the	
person’s	age,	gender	and	citizenship	based	on	a	simplification	of	the	U.S.	law.	
	
def legal_actions(age, male, citizen_of_USA):
 print("Legal to:")
 if age >= 21:
 print("Drink alcohol.")
 if age >= 18 and citizen_of_USA == True:
 print("Vote.")
 if male == True:
 print("Get drafted into the armed forces.")	
	
Save	and	then	load	the	function	above	into	python3.	When	you	make	the	function	call	
below,	you	are	determining	what	a	25-year-old	male	citizen	of	the	USA	can	do	legally	of	
the	three	options:	
	

legal_actions(25, True, True)	
	

For	the	function	call	above,	you	should	get	all	three	actions	printed	out.		
	

b. Create	a	file	table.txt	using	gedit.	In	table.txt,	write	your	answers	(age,	male,	
and	citizenship	that	will	result	in	the	given	output)	that	correspond	to	the	blank	spaces	
in	the	table	shown	below.	Use	your	function	in	Python3	to	test	your	answers.	If	a	
particular	parameter	does	not	matter	for	a	specific	output,	indicate	your	answer	as	
“anything”.	If	a	particular	output	is	impossible,	indicate	“None”	in	each	of	the	age,	male,	
and	citizenship	columns.	
	

	
	
	
	
	
	
	
	
	
	
EXTRA:	Think	about	how	your	results	will	change	if	the	operator	and	in	the	function	
above	were	replaced	with	or.	

Output	 Age	 Male?	 US	Citizen?	
DRINK,	VOTE	&	DRAFTED	 25	 True	 True	
DRINK	&	VOTE	only	 	 	 	
DRINK	&	DRAFTED	only	 	 	 	
VOTE	&	DRAFTED	only	 	 	 	
DRINK	only	 	 	 	
VOTE	only	 	 	 	
DRAFTED	only	 	 	 	
No	output	 	 	 	

	 Page	4		

	
3.3	Nested	Loops:	A	Triangular	Puzzle	
	

Consider	the	following	output	shown	below:	
	

1
2 2
3 3 3
4 4 4 4
5 5 5 5 5
6 6 6 6 6 6
7 7 7 7 7 7 7
8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9	
	

Create	a	file	triangular.py	using	gedit.	In	triangular.py,	write	the	following	function	
and	fill	in	the	missing	pieces	so	you	get	the	output	above	when	you	call	the	function	in	the	
interpreter.	

	

def triangle():

 for row in range(______,______):

 for i in range(_______):

 print(______, end=________)

 print() # move cursor to next line
	

	
HINTS:	
	
1.	The	outer	loop	variable	row	controls	which	row	you	are	printing	out.	Note	that	the	row	
number	corresponds	to	the	numbers	being	printed	out	in	that	row.	
	
2.	For	each	row,	the	inner	loop	variable	i	controls	how	many	numbers	are	printed	in	that	row.		
	
	

HARDER:	Try	to	print	out	a	triangle	with	15	rows	and	get	the	numbers	to	line	up	in	neat	columns.	
	
	
Submission	
	

When	you	finish	the	lab,	you	should	be	inside	the	lab3	folder,	which	is	inside	the	
private/15110	directory.	When	you	type	‘ls’	and	press	the	Enter	key,	you	should	see	
the	following	files:	doomsday.txt,	legal.py,	table.txt,	and	triangular.py.	Once	
you	see	all	files,	please	type	‘cd ..’	and	press	the	Enter	key.	Then,	zip	your	lab3	folder	by	
typing	‘zip –r lab3.zip lab3’.	Please	submit	the	zipped	file	lab3.zip	on	Autolab.	

