
	 Page	1	

15-110:	Principles	of	Computing,	Spring	2018	
	

Lab	10	–	Thursday,	April	5	
	

Goals	
	
This	lab	is	intended	to	continue	your	exploration	of	graphics	with	Python.	We	will	be	using	the	
module	tkinter	to	create	simple	computer	graphics	on	the	screen.	In	this	lab,	you	will	create	a	very	
simple	game	that	has	a	graphical	component.		
	
When	you	are	done	with	this	lab,	you	should	be	able	to	do	the	following:	
	

1. Draw	rectangles,	circles,	lines	and	text	on	a	canvas.	
2. Use	the	built-in	Python	function	input(prompt)	to	read	input	from	the	standard	input	

(keyboard).	The	parameter	prompt	is	a	string	that	is	shown	to	the	user	to	give	instructions,	
and	the	input	function	returns	a	string	with	what	is	typed	in	as	a	response	to	the	prompt.	

3. Given	an	existing	program	with	a	missing	component	and	a	specification	of	what	the	
resulting	program	should	do,	determine	how	to	integrate	the	newly	written	code	with	the	
existing	code.	

	
Part	1:	TA	Demonstrations	(Graphics	in	Python)	

• Review	the	function	input_num(prompt)	below	and	demonstrate	how	to	use	it:	

def input_num(prompt):
 while True:
 s = input(prompt)
 if s == "quit": return "quit"
 if s == "0": return 0
 if s == "1": return 1
 if s == "2": return 2
 print("TRY AGAIN: input 0, 1, 2 or quit")

• Review	how	to	draw	on	the	canvas:	
c.create_rectangle(x1, y1, x2, y2, fill=color)
c.create_oval(x1, y1, x2, y2, outline=color)
c.create_line(x1, y1, x2, y2, width=size, fill=color)
c.create_text(x1, y1, text, font=style, fill=color)
	

• Review	the	function	play()	to	observe	how	the	given	program	for	the	game	Tic-Tac-Toe	is	
structured.	

	 Page	2	

Overview	of	Tic-Tac-Toe	

In	this	lab,	you	will	develop	a	program	that	allows	two	players	to	play	Tic-Tac-Toe.	In	Tic-tac-toe,	
two	players	alternate	placing	their	marks	("X"'s	and	"O"'s,	respectively)	in	one	of	the	9	positions	of	
a	3x3	grid.	The	first	player	to	put	three	of	their	marks	in	a	vertical,	horizontal,	or	diagonal	line	is	the	
winner.	If	nine	marks	have	been	placed	without	either	player	getting	three	marks	in	a	row,	the	
game	ends	in	a	tie.	
	
Download	the	starter	code	from	Autolab	(tic_tac_toe.py).	Store	in	a	private	folder	named	lab10.	

In	order	to	represent	the	state	of	play	in	a	game	of	Tic-tac-toe,	we	will	use	a	two-dimensional	3x3	
list,	where	each	element	is	None	(if	the	corresponding	position	is	unoccupied),	0	if	the	position	is	
occupied	by	the	mark	("X")	of	the	first	player	("Player	0"),	or	1	if	the	position	is	occupied	by	the	
mark	("O")	of	the	second	player	("Player	1").	For	example,	the	Tic-tac-toe	grid	shown	at	right	could	
be	represented	by	the	2d	Python	list:		

[[1, None, 0],
 [None, 0, None],
 [None, None, None]]

The	function	new_grid creates	the	data	representation		
for	a	blank	3x3	Tic-tac-toe	grid.	The	function	add_mark 	
takes	parameters	grid,	row,	column,	player,	and		
modifies	grid	to	place	player's	mark	at	the	position		
specified	by	row	and	column	as	long	as	that	position		
is	unoccupied.	If	the	position	was	unoccupied,	then	after		
modifying	the	grid,	add_mark	returns	True.		
Otherwise	(i.e.,	the	position	was	already	occupied),		
add_mark	returns	False.	

Activities	

1.	Graphical	Display	of	the	Board		

Complete	the	Python	function	display_grid(grid)	that	draws	a	game	state	(stored	in	a	list	
of	lists)	to	the	canvas.	The	following	algorithm	may	be	used	for	display_grid:	

	 Page	3	

I. Create	a	rectangle	covering	the	entire	300	x	300	Canvas	and	filled	with	gray.	
II. Draw	the	horizontal	and	vertical	lines	separating	the	positions	in	the	grid.	
III. For	each	grid	position	(rows	in	0..2,	columns	in	0..2),	do	the	following:	

A. If	the	grid	indicates	that	the	position	should	hold	an	"X",	then	draw	an	"X"	in	the	
square	representing	the	specific	row	and	column.	(HINT:	This	requires	two	diagonal	
lines.)	

B. Otherwise	if	the	grid	indicates	that	the	position	should	hold	an	"O",	then	draw	a	
circle	in	the	square	representing	the	specific	row	and	column.	

C. Otherwise,	draw	the	coordinates	of	the	row	and	column	as	text.	

The	following	usage	should	result	in	the	image	above:	

>>> display_grid([[1,None,0], [None,0,None], [None,None,None]])

2.	Checking	for	a	Win	

Read	through	the	Tic	Tac	Toe	program	and	study	how	the	check_win	function	works.	It	calls		
check_win_horiz	and	check_win_vert.	Once	you	understand	how	it	works,	sit	with	
another	student	and	explain	the	function	to	each	other	so	you	are	sure	you	both	know	how	they	
work.	

Now,	on	your	own,	complete	the	functions	check_win_diagonal1	and	
check_win_diagonal2.	Test	the	game	to	see	that	your	functions	work	correctly.	

Once	you	are	done,	you	should	be	able	to	read	through	the	entire	code	and	understand	how	
everything	in	this	game	works.	

3.	Cleaning	up	the	Code	

As	you	read	through	the	function	check_win,	you	should	have	had	the	feeling	that	there	could	
be	a	shorter	way	to	program	that	function	(i.e.	using	fewer	instructions).	Revise	that	function	to	
have	as	few	lines	of	code	as	you	possibly	can.	

Submission		
	
When	you	finish	the	lab,	you	should	be	inside	the	lab10	folder,	which	is	inside	the	
private/15110	directory.	When	you	type	ls	and	press	the	Enter	key,	you	should	see	the	
following	file:	tic_tac_toe.py.	Once	you	see	this	file,	please	type	cd .. 	to	move	up	one	
folder	and	press	the	Enter	key.	Then,	zip	your	lab10	folder	by	typing	zip –r lab10.zip
lab10	and	you	should	see	a	lab10.zip	file	in	the	current	folder	if	you	type	ls.	Please	submit	
the	zipped	file	lab10.zip	on	Autolab	under	'lab	10'.	

